Хромосомы - это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц - хроматид [ выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5-10 микрон.

Химической основой строения хромосом являются нуклеопротеиды - комплексы (см.) с основными белками - гистонами и протаминами.

Рис. 1. Строение нормальной хромосомы.
А - внешний вид; Б - внутреннее строение: 1-первичная перетяжка; 2 - вторичная перетяжка; 3 -спутник; 4 - центромера.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.



Рис. 2. Нормальный хромосомный набор женщины (в правом нижнем углу две X-хромосомы).


Рис. 3. Нормальный хромосомный набор мужчины (в правом нижнем углу - последовательно Х- и Y-хромосомы).

В зрелых , яйцеклетках и содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский определяется наличием двух Х-хромосом, а мужской - одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma - окраска и soma - тело) - нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности - гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток - мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки хромосом в виде тонких нитей диаметром 100-500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз-интерфаза-митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности . Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности - генов - в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915-1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом . В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор - совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека - 46, гориллы - 48, кошки - 60, крысы - 42, дрозофилы - 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).


Рис. 4. Схема строения хромосом в метафазе митоза после продольного расщепления центромера: А и А1 - сестринские хроматиды; 1 - длинное плечо; 2 - короткое плечо; 3 - вторичная перетяжка; 4- центромер; 5 - волокна веретена.

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники - маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) - утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.


Рис. 5. Схема морфологии хромосомы в анафазе митоза (хроматида. отходящая к полюсу). А - внешний вид хромосомы; Б - внутреннее строение той же хромосомы с двумя составляющими ее хромонемами (полухроматидами): 1 - первичная перетяжка с хромомерами, составляющими центромер; 2 - вторичная перетяжка; 3 - спутник; 4 - нить спутника.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы . Гены, детерминирующие пол, локализованы в специальной паре хромосом - половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра . Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б - участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В - тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека . В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Рис. 1. Хромосомы: А - на стадии анафазы митоза в микроспороцитах трилистника; Б - на стадии метафазы первого деления мейоза в материнских клетках пыльцы у традесканции. В обоих случаях видно спиральное строение хромосом.
Рис. 2. Элементарные хромосомные нити с диаметром 100 Å (ДНК + гистон) из интерфазных ядер вилочковой железы теленка (электронная микроскопия): А - изолированные из ядер нити; Б - тонкий срез через пленку того же препарата.
Рис. 3. Хромосомный набор Vicia faba (конские бобы) в стадии метафазы.
Рис. 8. Хромосомы того же, что на рис. 7, набора, систематизированные согласно денверовской номенклатуре в пары гомологов (кариотип).


    Схема строения хромосомы в поздней профазе метафазе митоза. 1 хроматида; 2 центромера; 3 короткое плечо; 4 длинное плечо … Википедия

    I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия

    Раздел ботаники, занимающийся естественной классификацией растений. Экземпляры со многими сходными признаками объединяют в группы, называемые видами. Тигровые лилии один вид, белые лилии другой и т.п. Похожие друг на друга виды в свою очередь… … Энциклопедия Кольера

    генетическая терапия ex vivo - * генетычная тэрапія ex vivo * gene therapy ex vivo генотерапия на основе изоляции клеток мишеней пациента, их генетической модификации в условиях культивирования и аутологичной трансплантации. Генетическая терапия с использованием зародышевой… … Генетика. Энциклопедический словарь

    Животные, растения и микроорганизмы наиболее распространенные объекты генетических исследований.1 Acetabularia ацетабулярия. Pод одноклеточных зеленых водорослей класса сифоновых, характеризуются гигантским (до 2 мм в диаметре) ядром именно… … Молекулярная биология и генетика. Толковый словарь.

    Полимер - (Polymer) Определение полимера, виды полимеризации, синтетические полимеры Информация об определении полимера, виды полимеризации, синтетические полимеры Содержание Содержание Определение Историческая справка Наука о Полимеризация Виды… … Энциклопедия инвестора

    Особое качественное состояние мира, возможно, необходимая ступень в развитии Вселенной. Естественно научный подход к сущности Ж. сосредоточен на проблеме ее происхождения, ее материальных носителей, на отличии живого от неживого, на эволюции… … Философская энциклопедия

Содержащий гены. Название «хромосома» происходит от греческих слов (chrōma - окраска, цвет и sōma - тело), и обусловлено тем, что при делении клетки они интенсивно окрашиваются в присутствии основных красителей (например, анилин).

Многие ученые, с начала XX века, задумывались над вопросом: «Сколько хромосом у человека?». Так до 1955 года все «умы человечества» были убеждены, что количество хромосом у человека составляет 48, т.е. 24 пары. Причиной послужило то, что Теофилус Пейнтер (техасский ученый) неправильно посчитал их в препаративных срезах семенников людей, по решению суда (1921 год). В дальнейшем другие ученые, используя разные методы подсчета, также приходили к такому мнению. Даже разработав метод разделения хромосом, исследователи не стали оспаривать результат Пейнтера. Ошибку обнаружили ученые Альберт Леван и Джо-Хин Тьо в 1955 году, которые точно просчитали, сколько пар хромосом у человека, а именно - 23 (при их подсчете использовалась более современная техника).

Соматические и половые клетки содержат различный хромосомный набор у биологических видов, чего нельзя сказать об морфологических признаках хромосом, которые постоянны. имеют удвоенный (диплоидный набор), который разделяют на пары идентичных (гомологичных) хромосом, которые сходны по морфологии (строению) и величине. Одна часть всегда отцовского, другая - материнского происхождения. Половые же клетки человека (гаметы) представлены гаплоидным (единичным) набором хромосом. При оплодотворении яйцеклетки происходит их объединение в одном ядре зиготы гаплоидных наборов женских и мужских гамет. При этом восстанавливается двойной набор. Можно с точностью сказать, сколько хромосом у человека - их 46, при этом 22 пары из них аутосомы и одна пара - половые хромосомы (гоносомы). Половые имеют различия - как морфологические, так и структурные (состав генов). У женского организма пара гоносом содержит две Х-хромосомы (ХХ-пара), а у мужского - по одной Х- и Y-хромосоме (XY-пара).

Морфологически хромосомы изменяются при делении клетки, когда они удваиваются (за исключением половых клеток, у которых удвоения не происходит). Это повторяется много раз, однако изменение хромосомного набора не наблюдается. Наиболее заметны хромосомы на одной из стадий деления клетки (метафаза). В эту фазу хромосомы представлены двумя продольно-расщепленными образованиями (сестринские хроматиды), которые сужаются и объединяются в области, так называемой первичной перетяжки, или ценромеры (обязательный элемент хромосомы). Теломерами называют концы хромосомы. Структурно хромосомы человека представлены ДНК (дезоксирибонуклеиновой кислотой), которая кодирует гены, входящие в их состав. Гены, в свою очередь, несут информацию о каком-либо определенном признаке.

От того, сколько хромосом у человека будет зависеть его индивидуальное развитие. Существуют такие понятия как: анэуплоидия (изменение количества отдельных хромосом) и полиплоидия (число гаплоидных наборов больше диплоидного). Последняя бывает нескольких видов: потеря гомологичной хромосомы (моносомия), либо появление (трисомия - одна лишняя, тетрасомия - две лишние, и т.д.). Все это является следствием геномных и хромосомных мутаций, которые могут приводить к таким патологическим состояниям, как: синдромы Кляйнфельтера, Шерешевкого-Тернера и другим заболеваниям.

Таким образом, только ХХ век дал ответы на все вопросы, и теперь о том, сколько хромосом у человека, знает каждый образованный житель планеты Земля. Именно от того, каков будет состав 23 пары хромосом (ХХ или XY), зависит пол будущего ребенка, и определяется это при оплодотворении и слиянии женской и мужской половой клетки.

Плохая экология, жизнь в постоянном стрессе, приоритет карьеры над семьей – все это плохо отражается на способности человека приносить здоровое потомство. Как это ни прискорбно, но около 1% младенцев, появившихся на свет с серьезными нарушениями в хромосомном наборе, вырастают умственно или физически отсталыми. У 30% новорожденных отклонения в кариотипе приводят к формированию врожденных пороков. Основным вопросам этой темы посвящена наша статья.

Основной носитель наследственной информации

Как известно, хромосома – это определенная нуклеопротеидная (состоящая из устойчивого комплекса белков и нуклеиновых кислот) структура внутри ядра клетки эукариотов (то есть тех живых существ, клетки которых имеют ядро). Ее основная функция – хранение, передача и реализация генетической информации. Видна она под микроскоп только во время таких процессов как мейоз (деление двойного (диплоидного) набора генов хромосомы при создании половых клеток) и микоз (деление клеток при развитии организма).

Как уже было упомянуто, хромосома состоит из дезоксирибонуклеиновой кислоты (ДНК) и белков (около 63% ее массы), на которых намотана ее нить. Многочисленные исследования в области цитогенетики (наука о хромосомах) доказали, что именно ДНК является основным носителем наследственности. В ней заключается информация, которая в последствие реализуется в новом организме. Это комплекс генов, отвечающих за цвет волос и глаз, рост, количество пальцев и прочее. Какие из генов будут переданы ребенку, определяется в момент зачатия.

Формирование хромосомного набора здорового организма

У нормального человека 23 пары хромосом, каждая из которых отвечает за определенный ген. Итого их 46 (23х2) - сколько хромосом у здорового человека. Одна хромосома достается нам от отца, другая передается от матери. Исключение составляет 23 пара. Она отвечает за пол человека: женский обозначается как XX, а мужской – как XY. Когда хромосомы в паре – это диплоидный набор. В половых клетках они разъединены (гаплоидный набор) перед последующим соединением во время оплодотворения.

Совокупность признаков хромосом (как количественных, так и качественных), рассмотренных в пределах одной клетки, ученые называют кариотипом. Нарушения в нем, в зависимости от характера и степени тяжести, приводят к возникновению различных болезней.

Отклонения в кариотипе

Все нарушения кариотипа при классификации традиционно делят на два класса: геномные и хромосомные.

При геномных мутациях отмечают увеличение числа всего набора хромосом, или числа хромосом в одной из пар. Первый случай носит название полиплоидия, второй – анеуплоидия.

Хромосомные нарушения представляют собой перестройки, как внутри хромосом, так и между ними. Не вдаваясь в научные дебри, их можно описать так: некоторые участки хромосом могут не присутствовать или же быть удвоены в ущерб другим; может быть нарушен порядок следования генов, или изменено их местонахождение. Нарушения в структуре могут произойти в каждой хромосоме человека. В настоящее время, подробно описаны изменения в каждой из них.

Остановимся подробнее на наиболее известных и широко распространенных геномных заболеваниях.

Синдром Дауна

Был описан еще в 1866 году. На 700 новорожденных, как правило, приходится один малыш с подобной болезнью. Суть отклонения состоит в том, что к 21 паре присоединяется третья хромосома. Получается это, когда в половой клетке одного из родителей 24 хромосомы (с удвоенной 21). У больного ребенка в итоге их 47 – вот сколько хромосом у человека Дауна. Такой патологии способствуют вирусные инфекции или ионизирующая радиация, перенесенные родителями, а также диабет.

Дети с синдромом Дауна умственно отсталые. Проявления недуга видны даже во внешности: слишком большой язык, большие уши неправильной формы, кожная складка на веке и широкая переносица, белесые пятна в глазах. Живут такие люди в среднем лет сорок, поскольку, помимо прочего, подвержены сердечным заболеваниям, проблемам с кишечником и желудком, неразвитыми половыми органами (хотя женщины могут быть способны к деторождению).

Риск рождения больного ребенка тем выше, чем старше родители. В настоящее время существуют технологии, позволяющие распознать хромосомное нарушение на ранней стадии беременности. Немолодым парам необходимо проходить подобный тест. Не помешает он и молодым родителям, если в роду одного из них встречались больные синдромом дауна. Мозаичная форма болезни (поврежден кариотип части клеток) формируется уже на стадии эмбриона и от возраста родителей не зависит.

Синдром Патау

Это нарушение представляет собой трисомию тринадцатой хромосомы. Встречается оно куда реже, чем предыдущий описанный нами синдром (1 к 6000). Возникает оно при присоединении лишней хромосомы, а также при нарушении структуры хромосом и перераспределении их частей.

Диагностируют синдром Патау по трем симптомам: микрофтальм (уменьшенные размеры глаз), полидактилия (большее количество пальцев), расщелина губы и неба.

Смертность младенцев при этой болезни составляет порядка 70%. Большинство из них не доживает до 3 лет. У подверженных этому синдрому особей чаще всего наблюдаются порок сердца и/или головного мозга, проблемы с другими внутренними органами (почки, селезенка и прочее).

Синдром Эдвардса

Большая часть младенцев, у которых 3 восемнадцатых хромосомы, погибают вскоре после рождения. У них ярко выражена гипотрофия (проблемы с пищеварением, не позволяющие ребенку набрать вес). Глаза широко поставлены, уши низко расположены. Часто наблюдается порок сердца.

Выводы

Чтобы не допустит рождения больного ребенка, желательно проходит специальные обследования. В обязательном порядке тест показан роженицам после 35 лет; родителям, родственники которых были подвержены подобным заболеваниям; пациенткам, имеющим проблемы со щитовидной железой; женщинам, у которых случались выкидыши.

Хромосома - это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке. У человека имеется 22 пары обычных хромосом и одна пара половых хромосом. Помимо генов хромосомы также содержат регуляторные элементы и нуклеотидные последовательности. Они вмещают ДНК-связывающие белки, которые контролируют функции ДНК. Интересно, что слово «хромосома» происходит от греческого слова «chrome», означающего «цвет». Хромосомы получили такое название из-за того, что имеют особенность окрашиваться в различные тона. Структура и природа хромосом разнятся от организма к организму. Человеческие хромосомы всегда были предметом постоянного интереса исследователей, работающих в области генетики. Широкий круг факторов, которые определяются человеческими хромосомами, аномалии, за которые они ответственны, и их сложная природа всегда привлекали внимание многих ученых.

Интересные факты о человеческих хромосомах

В человеческих клетках содержится 23 пары ядерных хромосом. Хромосомы состоят из молекул ДНК, которые содержат гены. Хромосомная молекула ДНК содержит три нуклеотидных последовательности, требующихся для репликации. При окрашивании хромосом становится очевидной полосчатая структура митотических хромосом. Каждая полоска содержит многочисленные нуклеотидные пары ДНК.

Человек - это биологический вид, размножающийся половым путем и имеющий диплоидные соматические клетки, содержащие два набора хромосом. Один набор наследуется от матери, тогда как другой - от отца. Репродуктивные клети, в отличие от клеток тела, имеют один набор хромосом. Кроссинговер (перекрёст) между хромосомами приводит к созданию новых хромосом. Новые хромосомы не наследуются от кого-то одного из родителей. Это служит причиной того факта, что не у всех у нас проявляются черты, получаемые нами непосредственно от одного из наших родителей.

Аутосомным хромосомам присвоены номера от 1 до 22 в порядке убывания по мере уменьшения их размера. У каждого человека имеется два набора из 22-х хромосом, X-хромосома от матери и X- или Y-хромосома от отца.

Аномалия в содержимом хромосом клетки может вызывать у людей определенные генетические нарушения. Хромосомные аномалии у людей часто оказываются ответственными за появление генетических заболеваний у их детей. Те у кого, имеются хромосомные аномалии, зачастую являются только носителями заболевания, тогда как у их детей это заболевание проявляется.

Хромосомные аберрации (структурные изменения хромосом) бывают вызваны различными факторами, а именно делецией или дупликацией части хромосомы, инверсией, представляющей собой изменение направления хромосомы на противоположное, или транслокацией, при которой происходит отрыв части хромосомы и присоединение ее к другой хромосоме.

Лишняя копия хромосомы 21 ответственна за очень хорошо известное генетическое заболевание под названием синдром Дауна.

Трисомия хромосомы 18 приводит к синдрому Эдвардса, который может вызывать смерть в младенческом возрасте.

Делеция части пятой хромосомы приводит к генетическому нарушению известному как синдром кошачьего крика. У людей, пораженных этим заболеванием, зачастую наблюдается задержка в умственном развитии, а их плач в детском возрасте напоминает кошачий крик.

Нарушения, обусловленные аномалиями половых хромосом, включают синдром Тернера, при котором женские половые признаки присутствуют, но характеризуются недоразвитостью, а также синдром XXX у девочек и синдром XXY у мальчиков, которые вызывают дислексию у пораженных ими индивидуумов.

Впервые хромосомы были обнаружены в клетках растений. Монография Ван Бенедена, посвященная оплодотворенным яйцам аскарид привела к дальнейшим исследованиям. Позже Август Вайсман показал, что зародышевая линия отличается от сомы, и обнаружил, что клеточные ядра содержат наследственный материал. Он также предположил, что фертилизация приводит к формированию новой комбинации хромосом.

Эти открытия стали краеугольными камнями в области генетики. Исследователи уже накопили достаточно значительное количество знаний о человеческих хромосомах и генах, однако многое еще только предстоит обнаружить.

Видео