Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

  • Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс).
  • В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па = 766 мм рт. столба, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Энциклопедичный YouTube

  • 1 / 5

    Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моль вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях .

    Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

    С(тв) + 2H 2 (г) = CH 4 (г) + 74.9 кДж/моль.

    Стандартная энтальпия образования обозначается ΔH f O . Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля - то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии - ΔH 298,15 0 , где 0 указывает на равенство давления одной атмосфере (или, несколько более точно, на стандартные условия ), а 298,15 - температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу , оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество . Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.

    Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔH I 2 (тв) 0 = 0 кДж/моль, а для жидкого йода ΔH I 2 (ж) 0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

    Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствие закона Гесса):

    ΔH реакции O = ΣΔH f O (продукты) - ΣΔH f O (реагенты)

    Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеся выделением тепла в окружающую среду имеют отрицательный тепловой эффект и называются экзотермическими . Реакции, сопровождающиеся поглощением тепла имеют положительный тепловой эффект и называются эндотермическими . Тепловой эффект обычно относится к одному молю прореагировавшего исходного вещества, стехиометрический коэффициент которого максимален.

    Температурная зависимость теплового эффекта (энтальпии) реакции

    Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений):

    Δ H (T 2) = Δ H (T 1) + ∫ 1 2 Δ C p (T 1 , T 2) d (T) {\displaystyle \Delta {H(T_{2})}=\Delta {H(T_{1})}+\int \limits _{1}^{2}{\Delta {C_{p}}(T_{1}{,}T_{2})d(T)}}

    Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:

    Δ H (T 2) = Δ H (T 1) + ∫ 1 T f Δ C p (T 1 , T f) d (T) + ∫ T f 2 Δ C p (T f , T 2) d (T) {\displaystyle \Delta {H(T_{2})}=\Delta {H(T_{1})}+\int \limits _{1}^{T_{f}}{\Delta {C_{p}}(T_{1}{,}T_{f})d(T)}+\int \limits _{T_{f}}^{2}{\Delta {C_{p}}(T_{f}{,}T_{2})d(T)}}

    где ΔC p (T 1 ,T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ΔC p (T f ,T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода.

    Стандартная энтальпия сгорания - ΔH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

    Стандартная энтальпия растворения - ΔH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ΔH реш > 0, а гидратация ионов - экзотермический, ΔH гидр < 0. В зависимости от соотношения значений ΔH реш и ΔH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

    ΔH раствKOH о = ΔH реш о + ΔH гидрК + о + ΔH гидрOH − о = −59 КДж/моль

    Под энтальпией гидратации - ΔH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

    Стандартная энтальпия нейтрализации - ΔH нейтр о энтальпия реакции взаимодействия сильных кислот и оснований с образованием 1 моля воды при стандартных условиях:

    Стандартная энтальпия нейтрализации для концентрированных растворов сильных электролитов зависит от концентрации ионов, вследствие изменения значения ΔH гидратации ° ионов при разбавлении.

    Примечания

    Литература

    • Кнорре Д. Г., Крылова Л. Ф., Музыкантов В. С. Физическая химия. - М. : Высшая школа, 1990
    • Эткинс П. Физическая химия. - Москва. : Мир, 1980

    Тепловой эффект химической реакции

    При протекании химической реакции происходит перестройка химических связей в молекулах, переход из одного агрегатного состояния в другое и т.д. Все это приводит к изменению внутренней энергии системы. При этом система может совершать работу и обмениваться энергией с окружающей средой. Поскольку все виды энергии можно свести к эквивалентному количеству теплоты, то в химической термодинамике говорят о тепловом эффекте химической реакции.

    Тепловой эффект химической реакции – количество теплоты, которое выделяется или поглощается в ходе реакции при выполнении следующих условий:

    Процесс протекает необратимо при постоянном объеме или давлении;

    В системе не совершается никаких работ, кроме работы расширения;

    Продукты реакции имеют ту же температуру, что и исходные вещества.

    Согласно первому началу термодинамики тепловой эффект реакции равен: DQ =DU + p× DV. Поскольку теплота не является функцией состояния, то величина теплового эффекта химической реакции зависит от условий осуществления (пути) процесса. Различают тепловой эффект химической реакции, проведенной в изохорных условиях (DQ V =DU V ) и в изобарных (DQ p =DU p + p× DV =DН ).

    Очевидно, что DQ p –DQ V =DV . Для реакций, протекающих в конденсированной фазе (жидкости, твердые вещества), DV »0, а DQ p » DQ V .

    Чаще всего химические реакции проводят при постоянном давлении, поэтому при проведении термодинамических расчетов обычно используют тепловой эффект при постоянном давлении DQ p . В этом случае он соответствует изменению энтальпии системы в ходе реакции DQ p =D r Н (индекс r указывает на изменение термодинамической функции, в данном случае энтальпии, в ходе химической реакции).

    Реакции, протекающие с выделением теплоты в окружающую среду, называются экзотермическими , а реакции, протекающие с поглощением теплоты из окружающей среды, – эндотермическими . Так как тепловой эффект реакции соответствует изменению энтальпии системы, то очевидно, что для экзотермических процессов D r Н <0, а для эндотермических D r Н >0.

    Поскольку для химических реакций, протекающих в изобарных или изохорных условиях, теплота приобретает свойства функции состояния , то можно утверждать, что тепловой эффект реакции зависит только от вида и состояния исходных веществ и конечных продуктов и не зависит от пути превращения одних веществ в другие (промежуточных стадий). Это утверждение можно рассматривать как приложение первого начала термодинамики к химическим реакциям. Оно называется законом Гесса и является основным законом термохимии.

    Г.И. Гесс (СПб Академия наук) опытным путем установил, что «если из одних исходных веществ можно получить некоторые другие вещества несколькими способами, то суммарное количество тепла, выделившееся при образовании этих веществ, будет всегда одним и тем же, независимо от способа получения».

    Пример. Рассмотрим реакцию взаимодействия одного моля углерода (графит) и кислорода с образованием диоксида углерода при температуре Т =298 К.

    Данный процесс можно осуществить двумя путями:

    1) C(графит) + O 2 = CO 2 ; D r Н 1 = –393,51 кДж;

    2) C(графит) + 0,5O 2 = CO; D r Н 2 = –110,53 кДж;

    CO + 0,5O 2 = CO 2 ; D r Н 3 = –282,98 кДж.

    Рис. 5‑3 Диаграмма изменения энтальпии системы при взаимодействии одного моля углерода с кислородом с образованием диоксида углерода

    Диаграмма изменения энтальпии системы приведена на рис.5.3. Из нее видно, что D r Н 1 =D r Н 2 + D r Н 3 . Если неизвестен тепловой эффект одной из реакций, то его можно вычислить, зная остальные. Например, если известны D r Н 1 и D r Н 3 , то D r Н 2 =D r Н 1 –D r Н 3 .

    Таким образом, используя закон Гесса, можно рассчитывать тепловые эффекты химических реакций в тех случаях, когда их экспериментальное определение невозможно или затруднено. Более того, на основе имеющихся экспериментальных данных для относительно небольшого числа химических реакций можно проводить термодинамические расчеты как реально протекающих, так и гипотетических процессов.

    Тепловой эффект реакции в общем случае учитывает переход определенного числа молей исходного вещества в определенное число молей конечного вещества, согласно уравнению реакции. В этом случае численное значение теплового эффекта относится к уравнению конкретной химической реакции и его размерность [кДж]. Уравнение химической реакции, включающее в себя ее тепловой эффект, называется термохимическим уравнением .

    Часто тепловой эффект реакции относят к превращениям одного моля какого-либо вещества. Стехиометрический коэффициент в уравнении реакции у данного вещества равен единице, а коэффициенты у других веществ могут быть как целыми, так и дробными. В этом случае размерность теплового эффекта [кДж/моль]. Принято тепловые эффекты реакций образования одного моля вещества обозначать D f Н , а тепловые эффекты реакций сгорания одного моля вещества – D c Н .

    Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

    Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

    · Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс).

    · В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

    Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

    Стандартная энтальпия образования (стандартная теплота образования)

    Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях.

    Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

    С(тв) + 2H 2 (г) = CH 4 (г) + 76 кДж/моль.

    Стандартная энтальпия образования обозначается ΔH f O . Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля - то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии - ΔH 298,15 0 , где 0 указывает на равенство давления одной атмосфере (или, несколько более точно, на стандартные условия ), а 298,15 - температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу, оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество . Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.



    Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔH I2(тв) 0 = 0 кДж/моль, а для жидкого йода ΔH I2(ж) 0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

    Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствие закона Гесса):

    ΔH реакции O = ΣΔH f O (продукты) - ΣΔH f O (реагенты)

    Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеcя выделением тепла в окружающую среду имеют отрицательный тепловой эффект и называются экзотермическими. Реакции, сопровождающиеся поглощением тепла имеют положительный тепловой эффект и называются эндотермическими. Тепловой эффект обычно относится к одному молю прореагировавшего исходного вещества, стехиометрический коэффициент которого максимален.

    Температурная зависимость теплового эффекта (энтальпии) реакции

    Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений):

    Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:



    где ΔC p (T 1 ,T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ΔC p (T f ,T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода.

    Стандартная энтальпия сгорания - ΔH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

    Стандартная энтальпия растворения - ΔH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ΔH реш > 0, а гидратация ионов - экзотермический, ΔH гидр < 0. В зависимости от соотношения значений ΔH реш и ΔH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

    ΔH раствKOH о = ΔH реш о + ΔH гидрК +о + ΔH гидрOH −о = −59 КДж/моль

    Под энтальпией гидратации - ΔH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

    Стандартная энтальпия нейтрализации - ΔH нейтр о энтальпия реакции взаимодействия сильных кислот и оснований с образованием 1 моля воды при стандартных условиях:

    HCl + NaOH = NaCl + H 2 O

    H + + OH − = H 2 O, ΔH нейтр ° = −55,9 кДж/моль

    Стандартная энтальпия нейтрализации для концентрированных растворов сильных электролитов зависит от концентрации ионов, вследствие изменения значения ΔH гидратации ° ионов при разбавлении

    Энтальпия - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

    Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии, сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления, не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении. Единицы энтальпии - британская тепловая единица или джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

    Количество энтальпии

    Количество энтальпии вещества основано на его данной температуре. Данная температура - это значение, которая выбрано учеными и инженерами, как основание для вычислений. Это температура, при которой энтальпия вещества равна нулю Дж. Другими словами, у вещества нет доступной энергии, которую можно преобразовать в теплоту. Данная температура у различных веществ разная. Например, данная температура воды - это тройная точка (О °С), азота −150°С, а хладагентов на основе метана и этана −40°С.

    Если температура вещества выше его данной температуры или изменяет состояние на газообразное при данной температуре, энтальпия выражается положительным числом. И наоборот при температуре ниже данной энтальпия вещества выражается отрицательным числом. Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями. Это необходимо для настройки оборудования и определения коэффициента полезного действия процесса.

    Энтальпию часто определяют как полную энергию вещества, так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью проделать работу (pv). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту.
    H = U + pV

    ГЕССА ЗАКОН: тепловой эффект хим. р-ции зависит только от начального и конечного состояний системы и не зависит от ее промежут. состояний. Г. з. является выражением закона сохранения энергии для систем, в к-рых происходят хим. р-ции, и следствием первого начала термодинамики, однако был сформулирован ранее первого начала. Справедлив для р-ций, протекающих при постоянном объеме или при постоянном давлении; для первых тепловой эффект равен изменению внутр. энергии системы вследствие хим. р-ции, для вторых-изменению энтальпии. Для вычисления тепловых эффектов р-ций, в т.ч. практически неосуществимых, составляют систему термохим. ур-ний, к-рые представляют собой ур-ния р-ций, записанные совместно с соответствующими тепловыми эффектами при данной т-ре. При этом важно указывать агрегатное состояние реагирующих в-в, т.к. от этого зависит величина теплового эффекта р-ции.

    Систему термохим. ур-ний можно решать, оперируя ф-лами в-в, находящихся в идентичных состояниях, как обычными членами мат. ур-ний.

    Термохимия изучает тепловые эффекты химических реакций. Во многих случаях эти реакции протекают при постоянном объеме или постоянном давлении. Из первого закона термодинамики следует, что при этих условиях теплота является функцией состояния. При постоянном объеме теплота равна изменению внутренней энергии:

    а при постоянном давлении - изменению энтальпии:

    Эти равенства в применении к химическим реакциям составляют суть закона Гесса :

    Тепловой эффект химической реакции, протекающей при постоянном давлении или постоянном объеме, не зависит от пути реакции, а определяется только состоянием реагентов и продуктов реакции.

    Другими словами, тепловой эффект химической реакции равен изменению функции состояния.
    В термохимии, в отличие от других приложений термодинамики, теплота считается положительной, если она выделяется в окружающую среду, т.е. если H < 0 или U < 0. Под тепловым эффектом химической реакции понимают значение H (которое называют просто "энтальпией реакции") или U реакции.

    Если реакция протекает в растворе или в твердой фазе, где изменение объема незначительно, то

    H = U + (pV ) U . (3.3)

    Если же в реакции участвуют идеальные газы, то при постоянной температуре

    H = U + (pV ) = U + n . RT , (3.4)

    где n - изменение числа молей газов в реакции.

    Для того, чтобы облегчить сравнение энтальпий различных реакций, используют понятие "стандартного состояния". Стандартное состояние - это состояние чистого вещества при давлении 1 бар (= 10 5 Па) и заданной температуре . Для газов - это гипотетическое состояние при давлении 1 бар, обладающее свойствами бесконечно разреженного газа. Энтальпию реакции между веществами, находящимися в стандартных состояниях при температуре T , обозначают (r означает "reaction"). В термохимических уравнениях указывают не только формулы веществ, но и их агрегатные состояния или кристаллические модификации.

    Из закона Гесса вытекают важные следствия, которые позволяют рассчитывать энтальпии химических реакций.

    Следствие 1.

    равна разности стандартных энтальпий образования продуктов реакции и реагентов (с учетом стехиометрических коэффициентов):

    Стандартной энтальпией (теплотой) образования вещества (f означает "formation") при заданной температуре называют энтальпию реакции образования одного моля этого вещества из элементов , находящихся в наиболее устойчивом стандартном состоянии. Согласно этому определению, энтальпия образования наиболее устойчивых простых веществ в стандартном состоянии равна 0 при любой температуре. Стандартные энтальпии образования веществ при температуре 298 К приведены в справочниках.

    Понятия "энтальпия образования" используют не только для обычных веществ, но и для ионов в растворе. При этом за точку отсчета принят ион H + , для которого стандартная энтальпия образования в водном растворе полагается равной нулю:

    Следствие 2. Стандартная энтальпия химической реакции

    равна разности энтальпий сгорания реагентов и продуктов реакции (с учетом стехиометрических коэффициентов):

    (c означает "combustion"). Стандартной энтальпией (теплотой) сгорания вещества называют энтальпию реакции полного окисления одного моля вещества. Это следствие обычно используют для расчета тепловых эффектов органических реакций.

    Следствие 3. Энтальпия химической реакции равна разности энергий разрываемых и образующихся химических связей.

    Энергией связи A- B называют энергию, необходимую для разрыва связи и разведения образующихся частиц на бесконечное расстояние:

    AB (г) A (г) + B (г) .

    Энергия связи всегда положительна.

    Большинство термохимических данных в справочниках приведено при температуре 298 К. Для расчета тепловых эффектов при других температурах используют уравнение Кирхгофа :

    (дифференциальная форма) (3.7)

    (интегральная форма) (3.8)

    где C p - разность изобарных теплоемкостей продуктов реакции и исходных веществ. Если разница T 2 - T 1 невелика, то можно принять C p = const. При большой разнице температур необходимо использовать температурную зависимость C p (T ) типа:

    где коэффициенты a , b , c и т.д. для отдельных веществ берут из справочника, а знак обозначает разность между продуктами и реагентами (с учетом коэффициентов).

    ПРИМЕРЫ

    Пример 3-1. Стандартные энтальпии образования жидкой и газообразной воды при 298 К равны -285.8 и -241.8 кДж/моль, соответственно. Рассчитайте энтальпию испарения воды при этой температуре.

    Решение . Энтальпии образования соответствуют следующим реакциям:

    H 2(г) + ЅO 2(г) = H 2 O (ж) , H 1 0 = -285.8;

    H 2(г) + ЅO 2(г) = H 2 O (г) , H 2 0 = -241.8.

    Вторую реакцию можно провести в две стадии: сначала сжечь водород с образованием жидкой воды по первой реакции, а затем испарить воду:

    H 2 O (ж) = H 2 O (г) , H 0 исп = ?

    Тогда, согласно закону Гесса,

    H 1 0 + H 0 исп = H 2 0 ,

    откуда H 0 исп = -241.8 - (-285.8) = 44.0 кДж/моль.

    Ответ. 44.0 кДж/моль.

    Пример 3-2. Рассчитайте энтальпию реакции

    6C (г) + 6H (г) = C 6 H 6(г)

    а) по энтальпиям образования; б) по энергиям связи, в предположении, что двойные связи в молекуле C 6 H 6 фиксированы.

    Решение . а) Энтальпии образования (в кДж/моль) находим в справочнике (например, P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15): f H 0 (C 6 H 6(г)) = 82.93, f H 0 (C (г)) = 716.68, f H 0 (H (г)) = 217.97. Энтальпия реакции равна:

    r H 0 = 82.93 - 6 716.68 - 6 217.97 = -5525 кДж/моль.

    б) В данной реакции химические связи не разрываются, а только образуются. В приближении фиксированных двойных связей молекула C 6 H 6 содержит 6 связей C- H, 3 связи C- C и 3 связи C=C. Энергии связей (в кДж/моль) (P.W.Atkins, Physical Chemistry, 5th edition, p. C7): E (C- H) = 412, E (C- C) = 348, E (C=C) = 612. Энтальпия реакции равна:

    r H 0 = -(6 412 + 3 348 + 3 612) = -5352 кДж/моль.

    Разница с точным результатом -5525 кДж/моль обусловлена тем, что в молекуле бензола нет одинарных связей C- C и двойных связей C=C, а есть 6 ароматических связей C C.

    Ответ. а) -5525 кДж/моль; б) -5352 кДж/моль.

    Пример 3-3. Пользуясь справочными данными, рассчитайте энтальпию реакции

    3Cu (тв) + 8HNO 3(aq) = 3Cu(NO 3) 2(aq) + 2NO (г) + 4H 2 O (ж)

    Решение . Сокращенное ионное уравнение реакции имеет вид:

    3Cu (тв) + 8H + (aq) + 2NO 3 - (aq) = 3Cu 2+ (aq) + 2NO (г) + 4H 2 O (ж) .

    По закону Гесса, энтальпия реакции равна:

    r H 0 = 4 f H 0 (H 2 O (ж)) + 2 f H 0 (NO (г)) + 3 f H 0 (Cu 2+ (aq)) - 2 f H 0 (NO 3 - (aq))

    (энтальпии образования меди и иона H + равны, по определению, 0). Подставляя значения энтальпий образования (P.W.Atkins, Physical Chemistry, 5th edition, pp. C9-C15), находим:

    r H 0 = 4 (-285.8) + 2 90.25 + 3 64.77 - 2 (-205.0) = -358.4 кДж

    (в расчете на три моля меди).

    Ответ. -358.4 кДж.

    Пример 3-4. Рассчитайте энтальпию сгорания метана при 1000 К, если даны энтальпии образования при 298 К: f H 0 (CH 4) = -17.9 ккал/моль, f H 0 (CO 2) = -94.1 ккал/моль, f H 0 (H 2 O (г)) = -57.8 ккал/моль. Теплоемкости газов (в кал/(моль. К)) в интервале от 298 до 1000 К равны:

    C p (CH 4) = 3.422 + 0.0178 . T , C p (O 2) = 6.095 + 0.0033 . T ,

    C p (CO 2) = 6.396 + 0.0102 . T , C p (H 2 O (г)) = 7.188 + 0.0024 . T .

    Решение . Энтальпия реакции сгорания метана

    CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г)

    при 298 К равна:

    94.1 + 2 (-57.8) - (-17.9) = -191.8 ккал/моль.

    Найдем разность теплоемкостей как функцию температуры:

    C p = C p (CO 2) + 2C p (H 2 O (г)) - C p (CH 4) - 2C p (O 2) =
    = 5.16 - 0.0094T (кал/(моль. К)).

    Энтальпию реакции при 1000 К рассчитаем по уравнению Кирхгофа:

    = + = -191800 + 5.16
    (1000-298) - 0.0094 (1000 2 -298 2)/2 = -192500 кал/моль.

    Ответ. -192.5 ккал/моль.

    ЗАДАЧИ

    3-1. Сколько тепла потребуется на перевод 500 г Al (т.пл. 658 о С, H 0 пл = 92.4 кал/г), взятого при комнатной температуре, в расплавленное состояние, если C p (Al тв) = 0.183 + 1.096 10 -4 T кал/(г К)?

    3-2. Стандартная энтальпия реакции CaCO 3(тв) = CaO (тв) + CO 2(г) , протекающей в открытом сосуде при температуре 1000 К, равна 169 кДж/моль. Чему равна теплота этой реакции, протекающей при той же температуре, но в закрытом сосуде?

    3-3. Рассчитайте стандартную внутреннюю энергию образования жидкого бензола при 298 К, если стандартная энтальпия его образования равна 49.0 кДж/моль.

    3-4. Рассчитайте энтальпию образования N 2 O 5 (г) при T = 298 К на основании следующих данных:

    2NO(г) + O 2 (г) = 2NO 2 (г), H 1 0 = -114.2 кДж/моль,

    4NO 2 (г) + O 2 (г) = 2N 2 O 5 (г), H 2 0 = -110.2 кДж/моль,

    N 2 (г) + O 2 (г) = 2NO(г), H 3 0 = 182.6 кДж/моль.

    3-5. Энтальпии сгорания -глюкозы, -фруктозы и сахарозы при 25 о С равны -2802,
    -2810 и -5644 кДж/моль, соответственно. Рассчитайте теплоту гидролиза сахарозы.

    3-6. Определите энтальпию образования диборана B 2 H 6 (г) при T = 298 К из следующих данных:

    B 2 H 6 (г) + 3O 2 (г) = B 2 O 3 (тв) + 3H 2 O(г), H 1 0 = -2035.6 кДж/моль,

    2B(тв) + 3/2 O 2 (г) = B 2 O 3 (тв), H 2 0 = -1273.5 кДж/моль,

    H 2 (г) + 1/2 O 2 (г) = H 2 O(г), H 3 0 = -241.8 кДж/моль.

    3-7. Рассчитайте теплоту образования сульфата цинка из простых веществ при T = 298 К на основании следующих данных.

    Тепловой эффект реакции количество теплоты, которое выделяется или поглощается системой в результате протекания химической реакции. Это может быть Н (Р,Т = const) или U (V,T = const).

    Если в результате реакции теплота выделяется, т.е. энтальпия системы понижается (Н 0 ), то реакция называется экзотермической.

    Реакции, сопровождающиеся поглощением теплоты, т.е. с повышением энтальпии системы (Н 0), называются эндотермическими.

    Как и другие функции состояния, энтальпия зависит от количества вещества, поэтому ее велечену (Н) обычно относят к 1 моль вещества и выражают в кДж/моль.

    Обычно функции системы определяют при стандартных условиях , в которые, кроме параметров стандартного состояния, входит стандартная температура T = 298,15 К (25C). Часто температуру указывают в виде нижнего индекса ().

    5.3. Термохимические уравнения

    Термохимические уравнения реакций  уравнения, в которых указан тепловой эффект, условия реакций и агрегатные состояния веществ. Обычно в качестве теплового эффекта указывается энтальпия реакции. Например,

    C (графит) + O 2 (газ) = CO 2 (газ) , Н 0 298 = 396 кДж.

    Тепловой эффект можно записать в уравнении реакции:

    C (графит) + O 2 (газ) = CO 2 (газ) + 396 кДж.

    В химической термодинамике первая форма записи употребляется чаще.

    Особенности термохимических уравнений.

    1. Тепловой эффект зависит от массы реагирующего вещества, поэ-

    тому его обычно рассчитывают на один моль вещества. В связи с этим в термохимических уравнениях можно использовать дробные коэффициенты . Например, для случая образования одного моля хлороводорода термохимическое уравнение записывается так:

    ½H 2 + ½Cl 2 = HCl, H 0 298 = 92 кДж

    или Н 2 + Cl 2 = 2HСl, H 0 298 = 184 кДж.

    2. Тепловые эффекты зависят от агрегатного состояния реагентов; оно указывается в термохимических уравнениях индексами: ж жидкое, г  газообразное, т твердое или к – кристаллическое, р – растворенное.

    Например:H 2 + ½ O 2 = H 2 О (ж) , Н 0 298 = -285,8 кДж.

    H 2 + ½ О 2 = H 2 О (г) , Н 0 298 = 241,8 кДж.

    3. С термохимическими уравнениями можно производить алгебраические действия (их можно складывать, вычитать, умножать на любые коэффициенты вместе с тепловым эффектом).

    Термохимические уравнения более полно, чем обычные, отражают происходящие при реакции изменения  они показывают не только качественный и количественный состав реагентов и продуктов, но и количественные превращения энергии, которыми данная реакция сопровождается.

    5.4. Закон Гесса и его следствия

    В основе термохимических расчетов лежит закон открытый российским ученым Гессом Г. И. (1841 г.). Суть его в следующем: тепловой эффект химической реакции зависит только от начального и конечного состояния системы, но не зависит от скорости и пути процесса, то есть от числа промежуточных стадий. Это, в частности, значит, что термохимические реакции можно складывать вместе с их тепловыми эффектами. Например, образование CO 2 из углерода и кислорода можно представить следующей схемой:

    С+О 2 Н 1 СО 2 1. C (граф.) +O 2 (г) = CO 2 (г) , Н 0 1 = 396 кДж.

    2. C (граф.) + 1/2O 2 (г) = CO (г) , Н 0 2 = Х кДж.

    Н 2 Н 3

    3. CO (г) + 1/2O 2 (г) = CO 2 (г) , Н 0 3 = 285,5кДж.

    СО + ½ О 2

    Все эти три процесса находят широкое применение в практике. Как известно, тепловые эффекты образования СО 2 (Н 1) и горения СО (Н 3) определяются экспериментально. Тепловой же эффект образования СО (Н 2) экспериментально измерить невозможно, так как при горении углерода в условиях недостатка кислорода образуется смесь СО и СО 2 . Но энтальпию реакции образования СО из простых веществ можно рассчитать.

    Из закона Гесса следует, что H 0 1 = H 0 2 + H 0 3 . Следовательно,

    H 0 2 = H 0 1  H 0 3 = 396  (285,5) = 110,5 (кДж) – это и есть истенная величина

    Таким образом, пользуясь законом Гесса, можно находить теплоту реакций, которые невозможно определить экспериментально.

    В термохимических расчетах широко используют два следствия закона Гесса. По первому, тепловой эффект реакции равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ (реагентов).

    Н 0 х.р. = n прод · H 0 ƒ прод - n исх · Н 0 ƒ реагентов ,

    где n  количество вещества; Н 0 ƒ  стандартная энтальпия (теплота) образования вещества.

    Тепловой эффект реакции образования 1 моль сложного вещества из простых веществ, определенный при стандартных условиях, называется стандартной энтальпией образования этого вещества (Н 0 образ или Н 0 ƒ кДж/моль).

    Так как абсолютную энтальпию вещества определить невозможно, то для измерений и расчетов необходимо определить начало отсчета, то есть систему и условия, для которых принимается значение : Н = 0. В термодинамике в качестве начала отсчета принимают состояния простых веществ в их наиболее устойчивых формах при обычных условиях – в стандартном состоянии.

    Например: Н 0 ƒ (О 2) = 0, но Н 0 ƒ (О 3) = 142,3 кДж/моль. Стандартные энтальпии образования определены для многих веществ и проведены в справочниках (табл. 5.1).

    В общем виде для реакции аА+ вВ = сС + dD энтальпия, согласно первому следствию определяется по уравнению:

    H 0 298 х.р. = (cН 0 ƒ, C + dН 0 ƒ , Е)  (аH 0 ƒ , A + вH 0 ƒ , B).

    Второе следствие закона Гесса относится к органическим веществам. Тепловой эффект реакции с участием органических веществ равен сумме теплот сгорания реагентов за вычетом теплот сгорания продуктов.

    При этом теплота сгорания определяется в предположении полного

    сгорания: углерод окисляется до CO 2 , водород  до H 2 O, азот  до N 2 .

    Тепловой эффект реакции окисления кислородом элементов, входящих в состав вещества, до образования высших оксидов называется теплотой сгорания этого вещества (Н 0 сг.). При этом очевидно, что теплоты сгорания O 2 , CO 2 , H 2 O, N 2 принимаются равными нулю.

    Таблица 5.1

    Термодинамические константы некоторых веществ

    Вещество

    Н 0 f , 298 , кДж/ моль

    S 0 298 , Дж/ мольK

    G 0 f , 298 , кДж/ моль

    Вещество

    Н 0 f , 298, кДж/ моль

    Дж/ мольK

    G 0 f , 298 ,

    С(графит)

    Например, теплоту сгорания этанола

    C 2 H 5 OH (ж) + 3O 2 = 2CO 2 + 3H 2 O (г)

    H 0 х.р. = Н 0 сг (C 2 H 5 OH) = 2Н 0 ƒ, (CO 2)+3Н 0 ƒ, (H 2 O)  Н 0 ƒ, (C 2 H 5 OH).

    Н 0 сг (C 2 H 5 OH) = 2(393,5) + 3(241,8) – (277,7) = 1234,7 кДж/моль.

    Значения теплот сгорания также приведены в справочниках.

    Пример 1. Определить тепловой эффект реакции дегидратации этанола, если

    H 0 сг (C 2 H 4) =1422,8;H 0 сг (H 2 О) = 0; Н 0 сг (C 2 H 5 OH) =1234,7 (кДж/моль).

    Решение. Запишем реакцию:C 2 H 5 OH (ж) =C 2 H 4 +H 2 O.

    Согласно второму следствию определяем тепловой эффект реакции по теплотам сгорания, которые приведены в справочнике:

    H 0 298 х.р = H 0 сг (C 2 H 5 OH)  H 0 сг (C 2 H 4)  H 0 сг (H 2 O) =

    1234,7 + 1422,8 = 188,1 кДж/моль.

    В технике для характеристики тепловых качеств отдельных видов топлива обычно используют их теплотворную способность.

    Теплотворной способностью топлива называется тепловой эффект, который соответствует сгоранию единицы массы (1 кг) для твердых и жидких видов топлива или единицы объема (1 м 3) для газообразного топлива (табл. 5.2).

    Таблица 5.2

    Теплотворная способность и состав некоторых

    распространенных видов топлива

    Теплотворная способность,

    кислород

    Антрацит*

    Древ. уголь

    Прир. газ

    Сырая нефть

    *Антрацит – каменный уголь с максимальным содержанием углерода (94-96%).

    Водород является наиболее эффективным химическим энергоносителем для энергетики, транспорта и технологии будущего, поскольку имеет очень высокую теплотворную способность (табл. 4.2), его относительно легко транспортировать, а при его сгорании образуется только вода, т.е. он является "чистым" горючим, не вызывает загрязнения воздуха. Однако, его широкому использованию в качестве источника энергии мешает слишком малое содержание водорода в природе в свободном состоянии. Большую часть водорода получают разложением воды или углеводородов. Однако, такое разложение требует большого расхода энергии, причем на практике из-за тепловых потерь на получение водорода приходится затратить больше энергии, чем ее потом можно будет получить. В перспективе, если удастся создать большие и дешевые источники энергии (например, в результате развития техники получения ядерной или солнечной энергии), часть ее будет использоваться на получение водорода. Многие ученые убеждены, что энергетика будущего – это водородная энергетика.

    С помощью закона Гесса и его следствий можно определять многие величины, в том числе не определяемые экспериментально, если соответствующую неизвестной величине реакцию можно получить, складывая другие реакции с известными характеристиками.

    Пример 2. Исходя из теплоты сгорания СН 4 (Н 0 сг =890кДж/моль) и Н 2 (Н 0 сг =286 кДж/моль), вычислить теплотворную способность газа, содержащего 60 % водорода и 40 % метана СН 4 .

    Решение . Запишем термохимические уравнения реакций сгорания:

    1) Н 2 +½О 2 = Н 2 О (ж) ;Н 0 f (Н 2 О)=286 кДж/моль;

      СН 4 + 2О 2 = СО 2 + 2Н 2 О (ж) ;Н 0 2

    H 0 2 = Н 0 ƒ, (CO 2) + 2Н 0 ƒ, (Н 2 0)Н 0 ƒ, (СН 4) =3932 . 286 + 75 =890 кДж/моль.

    1м 3 газа содержит 600л Н 2 и 400л СН 4 , что составляетН 2 иСН 4 . Теплотворная способность газа составит:

    кДж/м 3 .

    Пример 3. Используя данные таблицы 5.1, рассчитать тепловой эффект реакции сгорания этилена: С 2 Н 4 + 3О 2 = 2СО 2 + 2Н 2 О (г).

    Решение. Из таблицы 5.1 выписываем значения энтальпий образования веществ, участвующих в реакции (в кДж/моль):

    H 0 ƒ , co 2 =393,5;Н 0 ƒ , с 2 н 4 = 52,3;Н 0 ƒ , н 2 о =241,8.

    (Напомним, что энтальпия образования простых веществ равна нулю.)

    Согласно следствию из закона Гесса (4.4):

    H 0 298 х.р =n прод · Н 0 ƒ , прод n исх · Н 0 ƒ , исх = 2Н 0 ƒ , со 2 + 2Н 0 ƒ , н 2 оН 0 ƒ , с 2 н 4 =

    2 . (393,5) + 2 . (241,8)52,3 =1322,9 кДж.

    Пример 4. Исходя из теплового эффекта реакции

    3СаО (т) + Р 2 О 5 (т) = Са 3 (РО 4) 2 (т) ,Н 0 =739 кДж,

    определить энтальпию образования ортофосфата кальция.

    Решение. По следствию из закона Гесса:

    H 0 298 х.р =Н 0 ƒ , Са 3 (PO 4) 2 (3Н 0 ƒ, СаО +Н 0 ƒ, P 2 O 5).

    Из табл. 4.1: Н 0 ƒ , (СаО) =635,5;Н 0 ƒ , (P 2 O 5)=1492 (кДж/моль).

    Н 0 ƒ , Са 3 (PO 4) 2 =739 + 3 . (635,5)1492 =4137,5 кДж/моль.

    Пример 5. Написать термохимическое уравнение реакции сгорания твердой серы в N 2 O, если известно, что при сгорании 16 г серы выделяется 66,9 кДж тепла (предполагается, что при измерении теплоты температура продуктов снижается до температуры реагентов, равной 298 К).

    Решение. Чтобы записать термохимическое уравнение, надо рассчитать тепловой эффект реакции:

    S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ;H 0 = Х кДж.

    По условию задачи известно, что при сгорании 16 г серы выделяется 66,9 кДж, а в реакции участвует 32 г серы. Составляем пропорцию:

    16г 66,9 кДж

    32г X кДж X = 133,8 к Дж.

    Таким образом, термохимическое уравнение записывается так:

    S (т) + 2N 2 O (г) = SO 2 (г) + 2N 2 (г) ,Н 0 х..р. =133,8 кДж.

    (Так как тепло выделяется, реакция экзотермическая, Н 0 0).

    Пример 6. Какое количество теплоты выделится при соединении 5,6 л водорода с хлором (н. у.), если энтальпия образования хлористого водорода равна91,8 кДж/моль (температура продуктов и реагентов равна 25С).

    Решение. Н 0 ƒ , (HCl) = -91,8 кДж/моль, это значит, что при образовании одного моля HCl из простых веществ выделяется 91,8 кДж тепла, что соответствует термохимическому уравнению:

    ½Cl 2 +½ H 2 =HCl,H 0 ƒ =91,8 кДж.

    Из уравнения видно, что для получения 1 моль HCl расходуется 0,5 моль Н 2 , т. е. 0,5·22,4 л = 11,2 л. Составляем пропорцию:

    11,2 л 91,8 кДж

    5,6 л XX= 45,19 кДж.

    Ответ: выделится 45,19 кДж тепла.

    Пример 7. Определить энтальпию образования оксида железа (III), исходя из трех термохимических уравнений (справочником не пользоваться):

      Fe 2 O 3 + 3CO = 2Fe + 3CO 2 , Н 0 1 = 26,5 кДж;

      С (графит) +½O 2 = CO,Н 0 2 =110,4 кДж;

      СO 2 = C (графит) + O 2 ,Н 0 3 = + 393,3 кДж.

    Решение: Запишем уравнение, тепловой эффект которого нужно определить:

    4Fe + 3O 2 = 2Fe 2 O 3 ; Н 0 4 = 2Х кДж.

    Чтобы из первых трех уравнений получить четвертое, надо уравнение 1) умножить на (2), а уравнения 2) и 3) – на (6) и сложить:

    1) 4Fe + 6CO 2 = 2Fe 2 O 3 + 6CO, Н 0 1 = 2·(+26,5) кДж;

    2) 6CO = 6С (графит) + 3O 2 ,Н 0 2 = 6·(+110,4) кДж;

    3) 6C (графит) + 6O 2 = 6СO 2 ,Н 0 3 = 6·(393,3) кДж;

    Н 0 4 = 2Н 0 1 + 6Н 0 2 + 6Н 0 3 = +53 + 662,42359,8 =1644,4 кДж.

    Отсюда Н 0 ƒ (Fe 2 O 3) =822,2 кДж/моль.