Основные понятия и ключевые термины: КЛЕТОЧНОЕ ДЫХАНИЕ. АНАЭРОБНОЕ ДЫХАНИЕ. АЭРОБНОЕ ДЫХАНИЕ.

Вспомните! Что такое дыхание?

Вступительное упражнение

Определите последовательность процессов пищеварения в организме человека после того, как в его ротовую полость попал кусочек шоколадно-бананового торта: г) полостное переваривание в двенадцатиперстной кишке белков, жиров и углеводов; э) медленное измельчение пищи и её увлажнение; н) расщепление амилазами слюны углеводов, имеющихся в торте;

е) склеивание пищи в пищевые комочки и их перемещение пищеводом в желудок; и) окончательное пристенное пищеварение сложных молекул и всасывание малых молекул в кровь и лимфу; р) расщепление в желудке бисквитных белков и жиров молока; я) транспортирование аминокислот, жирных кислот и глюкозы в клетки с помощью крови и лимфы. Какое слово получили?

Каково биологическое значение клеточного дыхания?

Основные питательные вещества для клеток - это аминокислоты, жирные кислоты и глюкоза. Дыхание является процессом, при котором эти вещества расщепляются и высвобождают химическую энергию. Выделяют два основных типа клеточного дыхания: анаэробный и аэробный.

АЭРОБНОЕ ДЫХАНИЕ - совокупность процессов биологического окисления питательных веществ и получения энергии с участием кислорода. Расщепление органических веществ происходит с образованием конечных продуктов окисления Н 2 О и СО 2 . Аэробное дыхание характерно для подавляющего большинства эукариотических клеток. Начинается гликолиз в цитоплазме и продолжается в митохондриях.

При аэробном окислении кислород служит акцептором (приёмником) электронов и протонов водорода с образованием воды. Аэробное дыхание - самый совершенный способ получения энергии. Его энергетический эффект примерно в 20 раз больше, чем при анаэробном дыхании.

Процессы дыхания сходны по многим признакам в клетках организмов разных царств живой природы. Признаками сходства являются образование таких универсальных веществ, как пировиноградная кислота и АТФ, использование кислорода в роли акцептора электронов и водорода, расщепление до конечных продуктов Н 2 О и СО 2 и т. д.

Итак, ДЫХАНИЕ КЛЕТКИ - это совокупность процессов биологического окисления питательных веществ с высвобождением химической энергии, которая аккумулируется в АТФ.

Какие процессы являются основой анаэробного дыхания клеток?

Большинство клеток для высвобождения энергии в процессах дыхания прежде всего используют глюкозу. Интересно, что есть клетки (например, клетки мозга, скелетных мышц, зрелые эритроциты), которые получают энергию только из молекул этого моносахарида.

Почему же глюкоза является основным источником энергии для клеток? Полярные молекулы глюкозы очень хорошо взаимодействуют с водой, поэтому легко и быстро перемещаются в клетке, их транспортирование в клетку осуществляется путём облегчённой диффузии, что не требует затрат энергии. Кроме того, глюкоза может превращаться клетками в резервные углеводы: в растительной клетке - в крахмал, в клетках животных и грибов - в гликоген.

Древнейшим и универсальным процессом бескислородного расщепления глюкозы является гликолиз (от греч. сладкий и расщепление), происходящий в цитоплазме клеток. Гликолиз - совокупность ферментативных реакций, обеспечивающих бескислородное расщепления молекул глюкозы с образованием молочной кислоты и АТФ. Гликолиз - это процесс, общий для анаэробного и аэробного дыхания. Энергетический эффект гликолиза - около 200 кДж (120 кДж - на теплоту, 80 кДж - на АТФ):

Энергия гликолиза составляет лишь 5 - 7 % потенциальной энергии глюкозы. Несмотря на низкую эффективность, гликолиз имеет большое биологическое значение. Этот процесс обеспечивает организм энергией в условиях дефицита кислорода. Даже у позвоночных животных и человека гликолиз служит эффективным способом получения энергии во время коротких периодов интенсивного напряжения.

Ещё одним механизмом анаэробного превращения глюкозы является брожение. Брожение - процесс разложения органических веществ (в основном углеводов) в бескислородных условиях. Процессы брожения Луи Пастер назвал «жизнью без кислорода». Брожение характерно для клеток дрожжей, молочнокислых бактерий, мукоровых грибов и др. Кроме спиртового и молочнокислого брожения у организмов ещё происходит масляно-, уксусно-, пропионовокислое, метановое и др.


Итак, основными процессами анаэробного дыхания в клетках являются гликолиз и брожение.

Каковы основные стадии аэробного дыхания клеток?

Процессы жизнедеятельности клеток очень сложны. Но их понимание очень важно, поскольку именно на клеточном уровне определяются все жизненные функции организмов. В качестве иллюстрации этого утверждения рассмотрим аэробное дыхание клеток.

Кислородный этап дыхания происходит в митохондриях с участием кислорода, и при этом высвобождается основная часть энергии (более 90 %) с образованием Н 2 О и СО 2 . Энергетический эффект такого расщепления велик (например, для глюкозы - около 2 600 кДж):

На этом этапе катаболизма учёные выделяют три стадии: окислительное декарбоксилирование, цикл Кребса (или цикл трикарбоно-вых кислот) и окислительное фосфорилирование (ил. 48).

Первая стадия. Окислительное декарбоксилирование - это превращение пировиноградной кислоты (продукт бескислородного расщепления малых биомолекул) на ацетилкоэнзим А (ацетил-КоА).

Вторая стадия. Цикл Кребса (цикл трикарбоновых кислот) -последовательность ферментативных реакций в матриксе митохондрий, в результате которых ацетил-КоА окисляется до СО 2 с высвобождением энергии и образованием атомов водорода.

Третья стадия. Окислительное фосфорилирование - биосинтез АТФ из АДФ и неорганического ортофосфата за счёт энергии, высвобождаемой и аккумулируемой при участии ферментов дыхательной цепи. Этот процесс происходит на кристах митохондрий.

Итак, благодаря реакциям кислородного этапа синтезируется в общей сложности 36 моль АТФ. Суммарным энергетическим результатом полного расщепления глюкозы является 2800 кДж энергии (200 кДж + 2600 кДж), из которой в 38 молекулах АТФ аккумулиру-

ется 55 %, а 45 % - рассеивается в виде теплоты. Полное уравнение расщепления глюкозы имеет вид:

Итак, основную роль в обеспечении клеток энергией выполняет полное кислородное расщепление глюкозы.


ДЕЯТЕЛЬНОСТЬ

Задание на формирование практических умений

В процессе катаболизма глюкозы в мышцах человека произошло расщепление 4 моль глюкозы, из которых полному кислородному расщеплению подверглась лишь половина. Определите: а) сколько молочной кислоты (в молях) накопилось в мышцах; б) сколько всего выделилось энергии; в) сколько АТФ (в молях) образовалось?

1. Сколько молочной кислоты (в молях) накопилось в мышцах человека?

2. Какое количество энергии выделилось при неполном расщеплении 2 моль глюкозы и полном расщеплении 2 моль глюкозы?

3. Сколько АТФ (в молях) образовалось?

ОТНОШЕНИЕ Биология + Здоровье

Расщепление питательных веществ в организме происходит в три этапа. С помощью таблицы сравните эти этапы. Докажите необходимость знаний о дыхании клеток для здорового образа жизни.

ЭТАПЫ РАСЩЕПЛЕНИЯ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ НА ПРИМЕРЕ УГЛЕВОДОВ

Задания для самоконтроля

1. Что такое дыхание клеток? 2. Назовите основные типы клеточного дыхания. 3. Что такое анаэробное дыхание? 4. Назовите основные механизмы анаэробного дыхания. 5. Что такое аэробное дыхание? 6. Назовите основные процессы аэробного дыхания.

7. Каково биологическое значение клеточного дыхания? 8. Какие процессы являются основой анаэробного дыхания клеток?

10. Почему кислородное расщепление органических соединений оказывается энергетически более эффективным, чем бескислородное?

Это материал учебника

Клеточное дыхание

Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически полезная энергия используется на жизнедеятельность клетки.

Биологически полезная энергия представляет собой поток электронов, идущий с более высоких энергетических уровней на более низкие. Происходит это так: под действием фермента от молекулы питательного вещества (углевода, жира, белка) отнимаются протоны (то есть атомы водорода), а вместе с ними и электроны. Этот процесс известен под названием дегидрирования. Отнятые электроны передаются на специальное вещество, которое называется акцептором. Далее другие ферменты отнимают электроны от первичного акцептора и передают их на другой и так далее, пока полностью не израсходуется энергия электрона или не запасется в виде энергии химических связей (аденозинтрифосфат). В конечном счете кислород реагирует с ионами водорода и отдавшими энергию электронами, превращается в воду, которая выводится из организма. Этот поток электронов получил название «электронного каскада». Для большей наглядности его можно представить в виде ряда водопадов, каждый водопад вращает турбину – отдает энергию, пока не отдаст ее полностью. На самом верху «вода» – пищевое вещество, от которого будут отниматься электроны и протоны (субстрат), а внизу – «отработавшая вода» – электроны и протоны с пониженной энергетикой, соединенные с кислородом (вода), и то, что остается от субстрата, – которая подлежит выделению.

Теперь рассмотрим этот же процесс с позиции деструктуризации (энтропии, то есть распада). Каждая молекула пищевого вещества имеет свою собственную пространственную структуру. При дегидрировании тот или иной фермент может отщепить лишь определенные атомы водорода, занимающие определенное пространственное положение в молекуле. В результате ряда таких последовательных отщеплений вещество со сложной структурой разрушается до простых составляющих. Энергия связи, освобождаясь, используется нашим организмом на собственное укрепление: поддерживает собственные структуры белков, жиров, углеводов и т. д. Таким образом, деструктуризируя пищевые вещества, организм поддерживает на стабильном уровне структуры собственного тела.

Если пища уже была ранее деструктурирована (термическая обработка, солка, сушка, рафинизация, измельчение и т. д.), то нашему организму достанется гораздо меньше энергии, заключенной в оставшихся пространственных связях. Поэтому мощь питания заключается не в калориях, а в структуре пищи. Продолжительность жизни зависит не от сытой пищи, а от структурированной.

Итак, клеточное дыхание представляет собой процесс выработки электронов, то есть электроэнергии. Э. Болл сделал расчеты, показывающие, сколько электрической энергии вырабатывается в организме при расщеплении субстратов до воды и углекислого газа. Исходя из потребления кислорода организмом взрослого человека в состоянии покоя (264 см 3 /мин), а также того факта, что каждый атом кислорода для образования молекулы воды требует двух атомов водорода и двух электронов, Болл подсчитал, что в каждую минуту во всех клетках тела с молекул усвоенных питательных веществ в процессе биологического окисления на кислород переходит 2,86 ? 1022 электронов, то есть суммарная сила тока достигает 76 ампер. Это внушительная величина: ведь через обычную 100?ваттную лампу проходит ток лишь около 1 ампера.

Переходу электронов с субстрата на кислород соответствует разность потенциалов 1,13 вольта; вольты, помноженные на амперы, дают ватты, так что 1,13 ? 76 = 85,9 ватта.

Таким образом, мощность потребления человеческим организмом приблизительно равна мощности, потребляемой стоваттной электролампой, однако при этом в организме используются значительно большие токи при значительно меньших напряжениях.

Исходя из вышеизложенного, уясним для себя роль каждого вещества в жизненном процессе. Питательные вещества служат для построения структур нашего тела, а подвергшиеся деструктуризации – дают нам энергию в виде электронов. Конечные продукты деструктуризации питательных веществ: вода дает нам среду для протекания жизненных процессов; углекислый газ является регулятором жизненных процессов (изменяет кислотно-щелочное равновесие, активирует генетический аппарат клетки, влияет на усвоение кислорода организмом). Кислороду, потребляемому при дыхании, отводится скромная роль выводить из организма электроны с пониженным энергетическим потенциалом в виде продуктов конечного звена деструктуризации: углекислого газа и воды.

С позиции биогенных элементов углерод (18 %) является связкой, которая соединяет кислород (70 %) и водород (10 %). Не азот, а углерод является фундаментом жизни, поэтому организм всеми силами стремится к его сохранению, ориентируя весь дыхательный процесс на стабильное сохранение углерода в виде углекислого газа и других его соединений. Уменьшение в организме углерода и его соединений сразу же сказывается на всех жизненно важных процессах, вызывая массу заболеваний.

Вот так осуществляется третья ступень дыхания – клеточное дыхание. Причем наибольшее количество углекислого газа получается при приеме углеводистой пищи, а наименьшее – от жирной и белковой.

Из книги Улучшение зрения без очков (без рисунков) автора Уильям Горацио Бейтс

3.6.Дыхание Кислород, как известно, играет важную роль во многих жизненных процессах, происходящих в организме. Поэтому дыхательным упражнениям уделяется большое внимание практически во всех системах оздоровления человека. Не стал исключением и метод Бэйтса. Некоторыми

Из книги Наука о дыхании индийских йогов автора Вильям Волкер Аткинсон

Глава VI ДЫХАНИЕ ЧЕРЕЗ НОЗДРИ И ДЫХАНИЕ ЧЕРЕЗ РОТ Один из первых уроков науки дыхания йогов посвящается тому, чтобы научиться дышать носом и победить обычную привычку – дышать ртом.Дыхательный механизм человека позволяет ему дышать и носом и ртом, но для него дело истинно

Из книги Как продлить быстротечную жизнь автора Николай Григорьевич Друзьяк

АТФ - УНИВЕРСАЛЬНОЕ КЛЕТОЧНОЕ ГОРЮЧЕЕ И снова мы возвращаемся к энергетике клетки. Вспомним, что клетка - это отдельный микромир, имеющий четкие границы, внутри которых существует непрерывная химическая активность и непрерывный поток энергии. В переносе энергии от

Из книги Полная энциклопедия оздоровления автора Геннадий Петрович Малахов

Клеточное дыхание Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически

Из книги Заболевания кожи автора Автор неизвестен

Глава 1. Анатомия и гистология (клеточное строение) кожи. Особенности анатомии и гистологии кожи у детей Являясь внешним покровом тела человека, кожа имеет сложное строение и выполняет несколько важных функций. Самый большой орган человека – это кожа. Площадь кожного

Из книги Пропедевтика внутренних болезней автора А. Ю. Яковлева

31. Везикулярное дыхание. Бронхиальное дыхание Шумы, возникающие в процессе дыхания, делят на физиологические (или основные) и патологические (или дополнительные).К основным шумам относят везикулярное дыхание, прослушиваемое над всей поверхностью легочной ткани, и

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

1. Везикулярное дыхание: механизм, физиологические и патологические варианты. Бронхиальное дыхание, его характеристика, разновидности, механизм образования Шумы, возникающие в процессе дыхания, делят на физиологические (или основные) и патологические (или

Из книги Йога автора Вильям Волкер Аткинсон

Из книги Диабет. Мифы и реальность автора Иван Павлович Неумывакин

Из книги 365 золотых упражнений по дыхательной гимнастике автора Наталья Ольшевская

265. Изначальное дыхание (дыхание зародыша) Дыхание человека обычно является отражением его стиля жизни. Люди, которые все время спешат, дышат поверхностно. Те, кто имеют возможность созерцать, – дышат глубоко. Но у каждого из нас был период максимального комфорта и

Из книги Все дыхательные гимнастики. Для здоровья тех, кому за… автора Михаил Борисович Ингерлейб

Глава 5. Клеточное дыхание Сложными, но верными в выбранном направлении тропами мы добрались до того момента, когда вам наконец станет ясно, для чего же столько хлопот – «тянуть» в глубь организма, к каждой его клеточке кислород, да еще и стараться, чтобы каждой клетке

Из книги Упражнения цигун для начинающих автора Валерий Николаевич Хорев

Дыхание Большинство из нас почему-то думают, будто ротовое отверстие пригодно не только для употребления пищи, но также для наполнения легких. Это заблуждение! Воздух, вдыхаемый через нос, проходит сложным лабиринтом, в котором он согревается, увлажняется и освобождается

Из книги Осознанное управление здоровьем автора Дмитрий Шаменков

Дыхание 1. Практика работы с дыханием, также как и телесная практика, тесно связана с фундаментальной практикой внимательности.2. Практика работы с дыханием требует повышенного внимания, так как дыхание - исключительно важный физиологический процесс.3. Практика работы с

Из книги Йога для всех. Руководство для начинающих автора Наталья Андреевна Панина

Дыхание При выполнении различных упражнений или асан необходимо правильно дышать. Для каждого конкретного случая подходит определенный тип дыхания. Ниже будет рассказано о некоторых из

Из книги Избранные упражнения и медитации автора Ниши Кацудзо

Обратное брюшное дыхание – «даосское дыхание» «Даосское дыхание» используется при занятиях боевыми искусствами. Оно позволяет быстро увеличить энергию тела при условии, что вы вдыхаете и выдыхаете воздух через нос.При вдохе вы втягиваете живот, максимально наполняя

Из книги автора

Грудное дыхание – дыхание силы Этот вид дыхания применяется для обретения силы при тяжелом физическом труде, например переноске тяжестей, перекатывании крупных камней и тяжелых стволов деревьев, а также при подготовке спортсменов и водолазов и в боевых искусствах.Вдох

Поток энергии в клетке

В основе потока энергии в клетке лежат процессы питания организмов и клеточного дыхания.

1. Питание – процесс приобретения вещества и энергии живыми организмами.

2. Клеточное дыхание – процесс, с помощью которого живые организмы высвобождают энергию из богатых ею органических веществ при их ферментативном расщеплении (диссимиляции) до более простых. Клеточное дыхание может быть аэробным и анаэробным.

3. Аэробное дыхание – получение энергии происходит при участии кислорода в процессе расщепления органических веществ. Его еще называют кислородным (аэробным) этапом энергетического обмена.

Анаэробное дыхание – получение энергии из пищи без использования свободного атмосферного кислорода. В общем виде поток энергии в клетке можно представить следующим образом (рис 5.3.)

ПИЩА
САХАР, ЖИРНЫЕ КИСЛОТЫ, АМИНО-КИСЛОТЫ
КЛЕТОЧНОЕ ДЫХАНИЕ
АТФ
СО 2 , Н 2 О, NH 3
ХИМИЧЕСКАЯ, МЕХАНИЧЕСКАЯ, ЭЛЕКТРИЧЕСКАЯ, ОСМОТИЧЕСКАЯ РАБОТА
АДФ + Н 3 РО 4

Рис.5.3. Поток энергии в клетке

Химическая работа : биосинтез в клетке белков, нуклеиновых кислот, жиров, полисахаридов.

Механическая работа : сокращение мышечных волокон, биение ресничек, расхождение хромосом при митозе.

Электрическая работа – поддержание разности потенциалов на мембране клетки.

Осмотическая работа – поддержание градиентов вещества в клетке и окружающей ее среде.

Процесс аэробного дыхания проходит в три этапа: 1) подготовительный; 2) бескислородный; 3) кислородный.

Первый этап подготовительный или этап пищеварения , включающий в себя ферментативное расщепление полимеров до мономеров: белков до аминокислот, жиров до глицерина и жирных кислот, гликогена и крахмала до глюкозы, нуклеиновых кислот до нуклеотидов. Протекает в желудочно-кишечном тракте при участии пищеварительных ферментов и цитоплазме клеток при участии ферментов лизосом.

На этом этапе выделяется небольшое количество энергии, рассеивающейся в виде тепла, а образовавшиеся мономеры подвергаются в клетках дальнейшему расщеплению или используются как строительный материал.

Второй этап анаэробный (бескислородный). Он протекает в цитоплазме клеток без участия кислорода. Мономеры, образовавшиеся на первом этапе, подвергаются дальнейшему расщеплению. Примером такого процесса является гликолиз бескислородное неполное расщепление глюкозы.

В реакциях гликолиза из одной молекулы глюкозы (С 6 Н 12 О 6) образуются две молекулы пировиноградной кислоты (С 3 Н 4 О 3 – ПВК). При этом от каждой молекулы глюкозы отщепляется 4 атома Н + и образуются 2 молекулы АТФ. Атомы Водорода присоединяются к НАД + (никотинамидадениндинуклеотид, функция НАД и подобных к нему переносчиков состоит в том, чтобы в первой реакции принимать Водород (восстанавливаться), а в другой – его отдавать (окисляться).



Сумарное уравнение гликолиза выглядит так:

С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД + → 2С 3 Н 4 О 3 + 2АТФ + 2Н 2 О +2НАД·Н 2

В процессе гликолиза выделяется 200 кДж/моль энергии, из которой 80 кДж или 40% идет на синтез АТФ, а 120 кДж (60%) рассеивается в виде тепла.

а) в животных клетках образуется 2 молекулы молочной кислоты, которая в дальнейшем превращается в гликоген и депонируется в печени;

б) в растительных клетках происходит спиртовое брожжение с выделением СО 2. Конечным продуктом является этанол.

Анаэробное дыхание по сравнению с кислородным дыханием эволюционно более ранняя, но менее эффективная форма получения энергии из питательных веществ.

Третий этап аэробный (кислородный, тканевое дыхание) протекает в митохондриях и требует присутствие кислорода .

Органические соединения, образовавшиеся на предыдущем бескислородном этапе, окисляются путем отщепления водорода до СО 2 и Н 2 О. Отсоеденившееся атомы Водорода с помощью переносчиков передаются до Кислорода, взаимодействуют с ним и образуют воду. Этот процесс сопровождается выделением значительного количества энергии, часть которой (55%) идет на образование воды. В кислородном этапе можно выделить реакции цикла Кребса и реакции окислительного фосфорилирования.

Цикл Кребса (цикл трикарбоновых кислот) происходит в матриксе митохондрий. Его открыл английский биохимик Х. Кребс в 1937 году.

Цикл Кребса начинается реакцией пировиноградной кислоты с уксуснокислой. При этом образуется лимонная кислота, которая после ряда последовательных преобразований снова становится уксуснокислой и цикл повторяется.

В ходе реакций цикла Кребса из одной молекулы ПВК образуется 4 пары атомов Водорода, две молекулы СО 2 , одна молекула АТФ. Углекислый газ выводится из клетки, а атомы Водорода присоединяются к молекулам переносчиков – НАД и ФАД (флавинадениндинуклеотид), в результате чего образуются НАД·Н 2 и ФАД·Н 2.

Передача энергии от НАД· Н 2 и ФАД·Н 2, которые оброзовались в цыкле Кребса и на предыидущем анаэробном этапе, к АТФ просходит на внутренней мембране митохондрий в дыхательной цепи.

Дыхательная цепь или цепь переноса электронов (электронно-транспрортная цепь) содержится во внутренней мембране митохондрий. Её основу составляют переносчики электронов, которые входят в состав ферментных комплексов, катализирующих окислительно-востановительные реакции.

Пары Водорода отщепляются от НАД·Н 2 и ФАД·Н 2, в виде протонов и электронов (2Н + +2е), поступают в электронно-транспортную цепь. В дыхательной цепи они вступают в ряд биохимических реакций, конечный результат которых – синтез АТФ (рис.5.4.)

Рис. 5.4 Электронно-транспортная цепь

Электроны и протоны захватываются молекулами переносчиков дыхательной цепи и переправляются: электроны на внутреннюю сторону мембраны, а протоны на внешнюю. Электроны соединяются с Кислородом. Атомы Кислорода при этом становятся отрицательно заряженными:

О 2 + е - = О 2 -

На внешней стороне мембраны накапливаются протоны (Н +), а изнутри анионы (О 2-). В результате этого возрастает разность потенциалов.

В некоторых местах мембраны встроены молекулы фермента для синтеза АТФ (АТФ-синтетаза), который имеет ионный (протонный) канал. Когда разница потенциалов на мембране достигает 200мВ, протоны (Н +) силой электрического поля проталкиваются через канал и проходят на внутреннюю сторону мембраны где взаимодействуют с О 2 - , образуя Н 2 О

½ О 2 + 2Н + = Н 2 О

Кислород, поступающий в митохондрии необходим для присоединения электронов (е -), а затем протонов (Н+). При отсутствии О 2 процессы, связанные с транспортом протонов и электронов, прекращаются. В этих случаях многие клетки синтезируют АТФ, расщепляя питательные вещества в процессе брожения.

Суммарное уравнение кислородного этапа

2С 3 Н 4 О 3 + 36Н 3 РО 4 + 6О 2 + 36 АДФ = 6СО 2 + 42 Н 2 О + 36АТФ + 2600кДж

1440 (40·36) аккумулируется в АТФ

1160 кДж выделяются в виде тепла

Суммарное уравнение кислородного дыхания, включающее бескислородный и кислородный этапы :

С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 + 6О 2 = 38АТФ +6СО 2 + 44Н 2 О

Конечные продукты энергетического обмена (СО 2 , Н 2 О, NH 3), а также избыток энергии выделяются из клетки через клеточную мембрану, строение и функции которой заслуживают особого внимания.

Фотосинтез и дыхание - два процесса, лежащие в основе жизни. Они оба происходят в клетке. Первый - в растительных и некоторых бактериальных, второй - и в животных, и в растительных, и в грибных, и в бактериальных.

Можно сказать, что клеточное дыхание и фотосинтез - процессы, противоположные друг другу. Отчасти это правильно, так как при первом поглощается кислород и выделяется а при втором - наоборот. Однако эти два процесса некорректно даже сравнивать, поскольку они происходят в разных органоидах с использованием разных веществ. Цели, для которых они нужны, тоже различны: фотосинтез необходим для получения питательных веществ, а клеточное дыхание - для выработки энергии.

Фотосинтез: где и как это происходит?

Это химическая реакция, направленная на получение органических веществ из неорганических. Обязательным условием протекания фотосинтеза является присутствие солнечного света, так как его энергия выступает в роли катализатора.

Фотосинтез, характерный для растений, можно выразить следующим уравнением:

  • 6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + 6О 2 .

То есть из шести молекул диоксида карбона и стольких же молекул воды в присутствии солнечного света растение может получить одну молекулу глюкозы и шесть кислорода.

Это самый простой пример фотосинтеза. Кроме глюкозы в растениях могут синтезироваться и другие, более сложные углеводы, а также органические вещества из других классов.

Вот пример выработки аминокислоты из неорганических соединений:

  • 6СО 2 + 4Н 2 О + 2SO 4 2- + 2NO 3 - + 6Н + = 2C 3 H 7 O 2 NS + 13О 2 .

Аэробное клеточное дыхание характерно для всех остальных организмов, в том числе животных и растений. Оно происходит при участии кислорода.

У представителей фауны клеточное дыхание происходит в специальных органоидах. Они называются митохондриями. У растений также клеточное дыхание происходит в митохондриях.

Этапы

Клеточное дыхание проходит в три стадии:

  1. Подготовительный этап.
  2. Гликолиз (анаэробный процесс, не требует кислорода).
  3. Окисление (аэробный этап).

Подготовительный этап

Первый этап заключается в том, что сложные вещества в пищеварительной системе расщепляются на более простые. Таким образом, из белков получаются аминокислоты, из липидов - жирные кислоты и глицерин, из сложных углеводов - глюкоза. Эти соединения транспортируются в клетку, а затем - непосредственно в митохондрии.

Гликолиз

Он заключается в том, что под действием ферментов глюкоза расщепляется до пировиноградной кислоты и атомов водорода. При этом образуется Этот процесс можно выразить таким уравнением:

  • С 6 Н 12 О 6 = 2С 3 Н 3 О 3 + 4Н + 2АТФ.

Таким образом, в процессе гликолиза из одной молекулы глюкозы организм может получить две молекулы АТФ.

Окисление

На данном этапе образовавшаяся во время гликолиза под действием ферментов реагирует с кислородом, в результате чего образуется углекислый газ и атомы водорода. Эти атомы затем транспортируются на кристы, где окисляются, образуя воду и 36 молекул АТФ.

Итак, в процессе клеточного дыхания в общей сложности образуется 38 молекул АТФ: 2 на втором этапе и 36 - на третьем. Аденозинтрифосфорная кислота и есть основной источник энергии, которым митохондрии снабжают клетку.

Структура митохондрий

Органоиды, в которых происходит дыхание, есть и в животных, и в растительных, и в Они обладают шаровидной формой и размером около 1 микрона.

Митохондрии, как и хлоропласты, имеют две мембраны, разделенные межмембранным пространством. То, что находится внутри оболочек этого органоида, называется матриксом. В нем находятся рибосомы, митохондриальная ДНК (мтДНК) и мтРНК. В матриксе проходит гликолиз и первая стадия окисления.

Из внутренней мембраны формируются складки, похожие на гребни. Они называются кристами. Здесь проходит вторая стадия третьего этапа клеточного дыхания. Во время нее образуется больше всего молекул АТФ.

Происхождение двухмембранных органоидов

Учеными доказано, что структуры, которые обеспечивают фотосинтез и дыхание, появились в клетке путем симбиогенеза. То есть когда-то это были отдельные организмы. Этим объясняется то, что и в митохондриях, и в хлоропластах есть свои рибосомы, ДНК и РНК.

Проработав эти темы, Вы должны уметь:

  1. Охарактеризовать приведенные ниже понятия и объяснить соотношения между ними:
    • полимер, мономер;
    • углевод, моносахарид, дисахарид, полисахарид;
    • липид, жирная кислота, глицерин;
    • аминокислота, пептидная связь, белок;
    • катализатор, фермент, активный центр;
    • нуклеиновая кислота, нуклеотид.
  2. Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  3. Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  4. Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  5. Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  6. Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  7. Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  8. Сравнить дыхание и брожение.
  9. Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  10. Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  11. Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  12. Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  13. Перечислить этапы белкового синтеза на уровне рибосом.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК.

Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
АГТАЦЦГАТАЦТЦГАТТТАЦГ...
Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
ТАЦТГГЦТАТГАГЦТАААТГ...

Тип 2. Кодирование белков.

Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
АААЦАААЦУГЦГГЦУГЦГААГ

С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
АЦГЦЦЦАТГГЦЦГГТ...

По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
УГЦГГГУАЦЦГГЦЦА...

Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
Цистеин-глицин-тирозин-аргинин-пролин-...

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
  • Тема 5. "Фотосинтез." §16-17 стр. 44-48
  • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
  • Тема 7. "Генетическая информация." §14-15 стр. 39-44