Нагревание тел с помощью электромагнитного поля, возникающего от воздействия индуцированным током, называется индукционным нагревом. Электротермическое оборудование, или индукционная печь, имеет разные модели, предназначенные для выполнения задач разного назначения.

Конструкция и принцип действия

По техническим характеристикам устройство является частью установки, используемой в металлургической промышленности. Принцип работы индукционной печи зависит от переменного тока , мощность установки формируется назначением прибора, в конструкцию которого входит:

  1. индуктор;
  2. каркас;
  3. плавильная камера;
  4. вакуумная система;
  5. механизмы перемещения объекта нагревания и другие приспособления.

Современный потребительский рынок располагает большим количеством моделей приборов, работающих по схеме образования вихревых токов. Принцип работы и конструкционные особенности промышленной индукционной печи позволяет выполнять ряд специфических операций, связанных с плавкой цветного металла, термической обработкой изделий из металла, спекания синтетических материалов, очисткой драгоценных и полудрагоценных камней. Бытовые приборы используются для дезинфекции предметов быта и обогрева помещений.

Работа ИП (индукционной печи) заключается в нагревании помещенных в камеру предметов вихревыми токами, излучаемыми индуктором, представляющим собой катушку индуктивности, выполненную в форме спирали, восьмерки или трилистника с обмоткой проводом большого поперечного сечения. Работающий от переменного тока индуктор создает импульсное магнитное поле, мощность которого изменяется в соответствии с частотой тока. Предмет, помещенный в магнитное поле, нагревается до точки закипания (жидкости) или плавления (металл).

Установки, работающие с помощью магнитного поля, производятся в двух типах: с магнитным проводником и без магнитопровода. Первый тип приборов имеет в конструкции индуктор, заключенный в металлический корпус, обеспечивающий быстрое повышение температуры внутри обрабатываемого объекта. В печах второго типа магнитотрон находится снаружи установки.

Особенности индукционных приборов

От мастера также требуются навыки конструирования и монтажа электроприборов. Безопасность устройства индивидуальной сборки заключается в ряде особенностей:

  1. емкости оборудования;
  2. рабочей частоты импульса;
  3. мощности генератора;
  4. вихревых потерь;
  5. гистерезисных потерь;
  6. интенсивности тепловой отдачи;
  7. способа футеровки.

Свое название канальные печи получили за наличие в пространстве агрегата двух отверстий с каналом, образующим замкнутый контур. По конструкционным особенностям прибор не может работать без контура, благодаря которому жидкий алюминий находится в непрерывном движении. При несоблюдении рекомендаций завода изготовителя оборудование самопроизвольно отключается, прерывая процесс плавки.

По расположению каналов индукционные плавильные агрегаты бывают вертикальными и горизонтальными с барабанной или цилиндрической формой камеры. Барабанная печь, в которой можно плавить чугун, выполнена из листовой стали. Поворотный механизм оснащен приводными роликами, электродвигателем на две скорости и цепной передачей.

Жидкая бронза заливается через сифон, расположенный на торцевой стенке, присадки и шлаки загружаются и удаляются через специальные отверстия. Выдача готовой продукции осуществляется через V -образный сливной канал, сделанный в футеровке по шаблону, который расплавляется в рабочем процессе. Охлаждение обмотки и сердечника осуществляется воздушной массой, температура корпуса регулируется при помощи воды.


При плавке металлов в вакууме выделяется значительной количество газов, которые должны удаляться с помощью вакуумных насосов. Первоначальный нагрев металла до 300-400° С сопровождается активной! десорбцией газов, а также испарением и разложением загрязнений на поверхности металла. При дальнейшем нагреве до 700-1000° С (для стали) практически полностью выделяется водород и частично кислород. После окончательного расплавления выделяются в большом количестве кислород, азот, окись углерода. Процесс состоит из стадий нагрева, расплавлен и рафинирования, во время которого удаляются остатки газа.

Методом вакуумной плавки особенно важно получать заготовки из железных сплавов, никеля, меди, молибдена для электровакуумной промышленности; пластичные сорта железа с малым содержанием углерода (армко, трансформаторные и др.), также железо с высокой магнитной проницаемостью; специальные стали и сплавы с пониженным содержанием водорода и азота; нихром;противокоррозионные сплавы на никелевой основе; высокоэлектродную медь и ее сплавы; платину и платиновые металлы; тугоплавкие редкие металлы. Чтобы получить качественный металл, необходимо загрузить ero в герметичную печь и при постепенном нагреве и расплавлении откачивать выделяющиеся из него газы. Время пребывания жидкого перегретого металла в вакууме должно быть достаточным, чтобы произошли полностью все химические реакции и дегазация. Дегазированный металл должен выливаться в изложницу в вакууме. При литье в вакууме металл можно выливать медленно и тонкой струей, не боясь его окисления. Благодаря этому образование усадочных раковин в металле минимально. Не следует также забывать о подборе материала для тигля, так как и из него в процессе работы выделяются пары и газы, присутствие которых в системе может привести к нежелательным результатам.


В индукционной электрической печи материал нагревается током, возбуждаемым внутри заготовки. Заготовка помещена в индукторе (соленоиде), питаемом током промышленной или повышенной частоты (рис. 160). При расчете индукционных вакуумных плавильных пери нужно учитывать специфику процесса: тепло выделяется непосредственно в самом металле, который, в свою очередь, нагревает тигель и футеровку течи. Преимущество индукционного метода нагрева заключается в возможности нагрева металла с большой скоростью, а также в наличии вихревых ков в расплавленном металле. Этот способ дает очень равномерный нагрев металла.

Металл может нагреваться непосредственно при протекании по катушке переменного тока (рис. 161, а) или косвенно теплом излучения и теплопродностью от вспомогательного концентрически расположенного металлического цилиндра, подвергаемого индукционному нагреву (рис. 161, б). В последнем случае тепловой обработке может быть подвергнут и не электропроводный материал; кроме того, здесь проще нагрев образца не цилиндрической формы.

Крупные промышленные индукционные печи для плавления металлов имеют неподвижную жестко закрепленную вакуумную камеру, в которой размещена индукционная катушка с тиглем. Крышка камеры вместе с индуктором и тиглем может отодвигаться. Одна из печей подобного типа показана на рис. 162. Крышка камеры с индукционной катушкой и тиглем трехтонной индукционной печи фирмы Херауэс (ФРГ) показана на рис. 163. Положение тигля и катушки может изменяться на разных стадиях процесса (рис. 164).

Предельное давление в подобных печах составляет 5 1O -4 мм рт. ст., скорость откачки воздуха до 20 ООО л/с при давлении 10 -3 мм рт. ст. Габаритные размеры камеры: диаметр от 2800 до 4500 мм, длина от 2200 до 3000 мм; размеры индуктора: внутренний диаметр от 570 до 900 мм, высота - от 700 до 1200 мм; средний объем тигля - от 80 до 350 л.

Пример применения индукционной печи - получение сплава бронзы I с дисульфидом молибдена. Это антифрикционное вещество можно применять в условиях высокого вакуума и низких температур. Плавильная печь в этом | случае снабжена вакуумным прессом.


Металл здесь нагревается проходящим через него электрическим током. Печи сопротивления обычно применяют для тугоплавких металлов. Электрооборудование этих печей дешевле, чем индукционных. Греющий элемент должен иметь возможно большее удельное сопротивление. Греющими элементами могут служить уголь, графит, крип-тол (зернистый уголь), карборунд, тугоплавкие металлы. В таких печах нагревают и плавят любые вещества; необходимо только, чтобы нагреваемые вещества или продукты их взаимодействия не выделяли паров, разрушающих нагреватели.

Здесь можно спекать металлокерамические сплавы, плавить малолетучие металлы и т. п. На рис. 165 показана вакуумная печь сопротивления для плавки циркония с графитовым нагревателем. Вакуумные печи сопротивления для работы при температурах до 1200° С и давлении 10 -3 - 10 -4 мм рт. ст. с футеровкой из шамота-легковеса применяют также для термической обработки магнитных сплавов, коррозионностойких и жаропрочных сталей, титана, циркония, сплавов на основе титана и циркония, для спекания композиций на основе железа, никеля, меди, для пайки твердыми припоями и т. п.

Дуговые печи позволяют в небольшом объеме выделить одновременно большее количество тепла и быстрее, чем в печах других типов, достичь высокой температуры. Плавку в дуговых в электропечах применяют главным образом в производстве металлов, имеющих большую химическую активность при высоких температурах (молибден, тантал, ти-1ан, цирконий и др.). Особенно хорошие результаты получены с так называемой зависимой дугой, когда между электродом и самим нагреваемым металлом создается дуга. Графитовые электроды при плавке применять нежелательно, так как это может вызвать дополнительную примесь углерода в металле. Обычно используют электроды из вольфрама. Во многих случаях электрод делают из того же металла, который плавят в дуговой печи, причем он постепенно оплавляется (расходуемый электрод).

Практика показала, что плавка в печах с расходуемым электродом дает возможность получать металлы и сплавы высокого качества. Характерной особенностью печи является равномерное выделение газов на протяжении всего цикла.


Схема вакуумной дуговой печи с расходуемым электродом дана на рис. 166. Схема печи фирмы Дегусса (ФРГ) для выплавки специальных сталей с загрузкой 400 кг приведена на рис. 167. На Ижорском заводе пущена мощная печь вакуумно-дугового переплава. Печь выдает слиток сверхчистой стали массой 37 т.

На рис. 168 показана дуговая вакуумная печь фирмы Ульвак (Япония) с расходуемым электродом производительностью 25 т за одну загрузку. Производительность таких печей от 2 кг до 30 т. Печь пригодна для рафинирования и плавления активных металлов и металлов с высокой точкой плавления.


Плавка в высоковакуумной печи с электроннолучевым нагревом дает возможность получать металл высокой чистоты. Рафинирование металла происходит как чисто зонной очисткой (благодаря различию в растворимости примесей в твердом и жидком) металле), так и дегазацией металла в вакууме и испарением примесей с более высокой упругостью пара, чем у очищаемого металла. Для расплавления возможен нагрев с помощью электронной пушки, которая служит катодом и бомбардирует исходный металл (анод). Плавящийся металл стекает в водоохлаждаемую изложницу, где поддерживается в расплавленном состоянии с помощью электронной бомбардировки от другой пушки. При производстве таким методом пластичного ниобия получали слиток длиной 1,2 м и диаметром около 80 мм. При этом скорость плавки ниобия достигала В5- 7 кг/ч, а при повторном переплаве-36 кг/ч.



Плавка с помощью электронной бомбардировки в вакууме имеет преимущества перед вакуумной дуговой плавкой: форма применяемого для плавки образца не имеет значения; расход электроэнергии значительно ниже, так как для поддержания дуги при дуговой плавке необходимы большие токи и низкое напряжение, а для питания электронных пушек - высокое напряжение и низкие токи;применение более высокого вакуума, чем в печах других типов; качество получаемого металла выше, чем в вакуумной дуговой печи.

Преимущества электронного нагрева дают основания считать этот метод перспективным для производства таких металлов, как тантал, молибен, ниобий, бериллий, а также специальных и коррозионностойких сталей.

Рис. 167. Схема высоковакуумной дуговой печи для расплавления специальных сталей с загрузкой 400 кг (фирма Дегусса, ФРГ)

Схема печи показана на рис. 169. Футеровка в такой печи отсутствует, а выделение газов равномерно в течение всего цикла. Для нормальной работы таких печей необходимо поддержание высокого вакуума, поэтому к исходному материалу предъявляют повышенные требования в отношении содержания газов. Исходный материал, предназначенный для плавки в печах электронным нагревом, предварительно плавится в вакуумных индукционных или дуговых печах.

Вфирма Ульвак (Япония) выпускает печи серии FME для плавки электронным лучом тугоплавких металлов: Та, Nb, Ti, Zr, W. Для работы в сверхвысоком вакууме фирма предлагает печи на базе сверхвысоковакуумного откачного агрегата EBD-400.


Такие печи, присоединяемые к сверхвысоко-вакуумному агрегату своим нижним фланцем, показаны на рис. 170. На рис. 170, а показана печь для зонной плавки и рафинирования тугоплавких (W, Та, Mo, Nb) и активных металлов (Ti, Zr), а также полупроводниковых материалов (Ge, Si) при давлениях порядка 10 -9 мм рт. ст. При таких давлениях плавление происходит в абсолютно чистой и сухой среде. В печах можно также обрабатывать сталь, никель и другие металлы. Предельное давление в печи без загрузки после прогревания всей системы в течение 6 ч до 250° С составляет 1 *10 -9 мм рт. ст.

Рис. 171. Схема сверхвысоковакуумной печи с нагревом электронным лучом и с отклоняющей системой (фирма Ульвак, Япония)

Равновесное давление при зонном плавлении тантала и скорости прохода 0,1 мм/мин около 10 -8 мм рт. ст. Размеры образца: диаметр 4-7 мм, длина 200 мм. Эффективная длина при плавлении составляет 120 мм. Максимальная мощность электронной пушки 5 кВт. Расходуемая мощность при непрерывной работе 3 кВт. Мощность, расходуемая системой откачки, 10 кВт; расход воды 20 л/с. Скорость прохода электронной пушки может меняться в широких пределах с целью создания оптимальных условий для плавления и рафинирования. Образец может вращаться со скоростью от 1 до 8 об/мин. Здесь применяется электростатическая электронная пушка с кольцевым катодом.

На рис. 170, б показана печь EBD-400, снабженная электронной пушкой мощностью 6 кВт проникающего типа и водоохлаждаемой медной изложницей. Слитки получают двух видов: либо полукруглой формы (в изложнице 8x5 мм), либо У-образной формы изложница длиной 200 мм, шириной 23 мм и глубиной 15 мм). Давление печи при плавлении тантала и предельное давление те же, что и в предыдущем случае. Электронная пушка, снабженная отклоняющей системой, имеет максимальную мощность 6 кВт при ускоряющем напряжении от 0 до 20 кВ. Диапазон изгибания луча 200 мм в направлении X, 23 мм в направлении Y. Автоматическая развертка возможна для направления X и Y. Мощность системы откачки 10 кВт; расход воды 25 л/мин. Устройство печи EBD-400 EBM показано на рис. 171.

Отправить запрос

Производство и поставка вакуумных индукционных печей по России и странам СНГ

В настоящее время спрос на сталь и сплавы особого назначения для аэрокосмической, авиационной, атомной и энергетической промышленности стремительно растёт. В этих сферах промышленности зачастую требуются всё более высокие значения по прочности, чистоте и другим свойствам металла.

Для того, чтобы решить задачу по повышению качественных свойств выплавляемых металлов, компания “МетаКуб” готова предложить технологии, основанные на инновационных способах выплавки, для получения стали и сплавов с особыми технологическими свойствами. К таким способам относится вакуумная индукционная плавка.

Необходимость в создании вакуумных индукционных печей возникла в связи с необходимостью внедрения в промышленное производство высокореакционных и тугоплавких металлов, таких как: цирконий, титан, ниобий, бериллий и молибден, а также тантал, вольфрам, уран и ряд других. Особенностью таких металлов является то, что они интенсивно окисляются при нагреве на воздухе, и поэтому плавку необходимо вести в вакууме.

Особенности вакуумных индукционных печей

Технология вакуумной индукционной плавки позволяет получать высокоочищенные металлы в бескислородной атмосфере. При использовании вакуумных индукционных печей можно получить жаропрочные и высоколегированные стали, прецизионные сплавы. Также в вакуумных индукционных печах можно проводить термообработку и плавление драгоценных и редкоземельных металлов, а также варку высокосортного спецстекла и использовать их для получения монокристаллов. Во всех случаях получаемый материал на вакуумных печах отличается повышенной чистотой и минимальным угаром.

Большую роль при рафинации в вакуумной индукционной печи играет процесс испарения легкоплавких примесей - свинца, мышьяка, олова и висмута. Высокие качества вакуумного металла отчасти обеспечены очищением сплава от этих примесей, содержащихся в очень малых количествах, что становится невозможным определить их даже совершенными методами анализа. Это необходимо, когда требования к материалу достаточно высоки и полученный спецсплав должен отвечать определенным свойствам.

Также достоинством вакуумных печей является способность получать монокристаллические и мелкозернистые структуры металлов. При этом свойства получаемого материала можно прогнозировать.

Модель Объем печи, кг Мощность, кВт Частота, кГц Предельный холодный вакуум, Па Расход воды на охлаждение, м 3 /час Напряжение питающей сети, В
ВПИ-10 10 50 2,5 6.67×10-3 5 380
ВПИ-25 25 100 2,5 6.67×10-3 5 380
ВПИ-50 50 100 2,5 6.67×10-3 7 380
ВПИ-150 150 100 2,5 6.67×10-3 13 380

Рабочая температура печей - до 2200-- градусов.

  • Возможность длительной выдержки жидкого металла в глубоком вакууме;
  • Высокая степень дегазации металлов;
  • Возможность производить дозагрузку печи в процессе плавки;
  • Возможность активного воздействия на интенсификацию процессов раскисления и рафинирования в любой момент плавки;
  • Возможность эффективного контроля и регулирования состояния расплава по его температуре и химическому составу в течение всего процесса;
  • Особая чистота получаемых отливок за счет отсутствия любых неметаллических включений;
  • Возможность производить быстрый нагрев (прямой нагрев за счет тепла выделяемого в расплаве) за счет чего увеличивается производительность;
  • Высокая гомогенность расплава за счет активного перемешивания металла;
  • Произвольная форма сырья (кусковые материалы, брикеты, порошок и т.д.)
  • Высокая экономичность и экологическая чистота.

Конструкция вакуумных печей


представляет собой высокочастотную печь из огнеупорного тигля, помещенную внутри индуктора, который в свою очередь располагается внутри герметичного корпуса, из которого вакуумными насосами выкачиваются газы. Тигель вакуумных печей производят из порошкообразных высокоогнеупорных материалов набивкой в индукторе по шаблону. Вакуумные индукционные печи являются механизированными агрегатами. Розлив металла может происходить либо поворотом печи внутри камеры, либо поворотом самой камеры в целом. Вакуумная индукционная плавильная печь позволяет независимо выполнять следующие операции: регулировать температуру расплава, изменять давлении внутри камеры, производить перемешивание расплава, а также добавлять другие элементы в расплав.

Модульный принцип построения вакуумных печей позволяет достигать повышенную компактность печи, а также возможность присоединения дополнительных модулей - камеру разгрузки, разливки, а также съема получаемых изделий.

Конструкция современных вакуумных индукционных печей позволяет устанавливать изложницы и выгружать из них слитки без нарушения вакуума в печи. Вакуумные индукционные печи чаще всего являются автоматизированными устройствами. Загрузка шихты, введение добавок и присадок, разливка металла осуществляются с использованием электрического или гидравлического привода.

Купить вакуумную индукционную печь по низкой цене - Компания “МетаКуб”

Компания “МетаКуб” готова предложить Вам широкий выбор вакуумных индукционных печей по низким ценам с поставкой и вводом в эксплуатацию по России и странам СНГ. Наша компания имеет огромный опыт поставки различного металлургического оборудования на предприятия России, Казахстана, Беларуси и других стран СНГ.

Вакуумная печь — это устройство, которое в первую очередь предназначено для образования внутри системы высокой температуры. Проделывается весь этот путь, для того, чтобы достичь оптимальных условий для плавки металла в вакууме с помощью энергии электрической дуги.

Навигация:

Если говорить о том, где задействуются подобные устройства, то на данный момент вакуумные печи нашли свое применение во многих отраслях производства, где они играют одни из самых важных ролей. К примеру, вакуумные печи нашли свое применение в таких отраслях, как:

  • Ракетостроение
  • Космическая промышленность
  • Атомная энергетика
  • Металлургия

Все эти отрасли требуют качественной выплавки высококачественных сталей, которые смогут выдерживать самые трудные погодные условия. А без участия вакуумных печей, достичь подобной кондиции попросту невозможно.

Также можно рассмотреть главные преимущества вакуумной печи, которых на самом деле огромное количество. Пройдя через вакуумную печь, в сплаве остается минимальное содержание газов и неметаллических веществ.

Благодаря качественной конструкции вакуумных печей, а именно отдельных её элементов, удалось достичь максимальной прочности агрегата. Этот фактор позволяет достигать внутри системы максимальных температур, вплоть до 2000 градусов. При этом, сплавы являются действительно очень качественными и не содержат в себе каких-то нежеланных элементов. А сами печи, вне зависимости от ценовой категории никаким образом не портятся и остаются все такими же эффективными.

Но стоит отметить тот факт, что вакуумная печь, цена которой довольно высока — это не такой часто встречаемый продукт, и купить подобный агрегат будет весьма проблематично.

Дуговая печь

В отличие от обычной вакуумной печи, дуговая печь работает по мене запутанному алгоритму, но результаты, которые она предоставляет, ничем не уступают обычной версии вакуумной печи. Но стоит напомнить, что у этих печей абсолютно разное предназначение и каждая из них выполняет собственные задачи.

Дуговая печь работает за счет теплового эффекта электрической дуги, который приводит в действие весь механизм. Главная задача этого агрегата — это плавка металла, но кроме него, печь в силах справится и с другими материалами, и показывает себя в этом только с лучшей стороны.

Дуговые печи имеют три версии сборки, из-за чего их и разделили на три отдельных категории.

  • Печи прямого нагрева — электрическая дуга находится посредине двух электродов и находится под воздействием расплавленных металлов.
  • Печи с закрытой дугой — материал, который поддается нагреву, находится внутри, в полном окружении электродов. Что касается дуги, то в этом устройстве, она разместилась под нагреваемым материалом. С помощью излучения, дуга воздействует на материал внутри системы, придавая ему все условия для быстрой плавки, в то время как электрический ток проходит внутри расплавленного метала
  • Печи косвенного нагрева — Этот тип системы подразумевает более интересный способ работы, так как здесь электрическая дуга, находится в активном режиме только между электродами. Что касается тепла от дуги, то оно поступает посредством излучения.

Индукционная печь

Индукционные печи в плане внешнего вида не особо отличаются от своих собратьев, но что касается технологии работы, то здесь отличия просто кардинальные. В какой-то мере можно сказать, что именно индукционные плавильные печи — это прорыв в отрасли плавки металлов, так как технология плавильной печи устроена таким образом, что нагревается не сам агрегат, а лишь материал который в нем находится, так как электрическая энергия направленна исключительно на материал внутри системы.

Вакуумная индукционная плавильная печь, использует нагрев токами, высочайшей частоты, которые позволяют реализовать возможность создания наибольшей концентрации электрической энергии. Она же в свою очередь, направляется на метал, который находится в плавильной печи. Также большим плюсом является то, что подобная технология позволяет проводить нагрев намного быстрее, чем обычные печи. А это значит, что предприятия, которые используют именно индукционные плавильные печи, имеют возможность значительно увеличить эффективность труда, что принесет дополнительный доход.

Вакуумная термическая печь

Вакуумная термическая печь, как собственно и другие её вариации, также нашла свое применение во многих производственных отраслях и на данный момент используется многими предприятиями. Если говорить о самых известных отраслях, в которых на данный момент термическая печь является важнейшим звеном, то сюда можно отнести такие отрасли, как:

  • Авиационная промышленность
  • Космическая промышленность
  • Машиностроение

Все эти отрасли являются довольно распространёнными в нашей стране, и все они используют в своей работе вакуумную термообработку деталей, без которой они будут попросту не пригодны для работы. После термообработки, любая деталь покрывается небольшим покрытием, которое в будущем и служит надежным защитником от воздействия окружающей среды.

Что касается ценовой категории вакуумных термических печей — то это действительно дорогой агрегат, купить который будет довольно проблематично. Обычному человеку это возможно сделать, если он найдет самую маленькую версию печи подобного типа, которых на рынке не так много. Зачастую вакуумные термические печи используются большими предприятиями, которым требуется устройство, которое сможет давать хорошие показатели работоспособности и при этом работать сутками без остановки.

Водородная печь

Если говорить о наиболее качественной и надежной печи, то без каких-либо сомнений можно сказать, что таковой является водородная печь, имеющая наибольший спектр функций, которые позволяют ей справляться с самыми разными задачами. Не стоит также забывать и о характеристиках подобного агрегата, так как они действительно отличаются от того, что можно увидеть у вакуумных печах других вариаций.

Дополнительные процессы отжига и пайки, позволяют деталям обеспечить по-настоящему качественное соединение. Вакуумные водородные печи, также отличатся абсолютной автоматизацией и не требуют никакой человеческой помощи. Для долгой и качественной работы, надо лишь правильно настроить агрегат, после чего он будет выполнять все в точности с заданными параметрами.

Водородные печи выпускаются в самых различных вариациях в точном числе и в плане габаритов есть самые разные модели. А это значит, что человек, который хочет себе подобное устройство, имея нужную сумму денег, может без каких-либо преград купить себе подобный агрегат. Но все-таки намного чаще он используется на различных производствах, где он выполняет одну из важнейших функций.

По сути, сравнивать все эти печи – это довольно странная затея, так как все они имеют свое предназначение и выполняют отдельные функции. Но все-таки, если сравнивать их в плане производительности, то лучше всего себя показывает именно вакуумная водородная печь, демонстрируя отличное качество и скорость работы, которая значительно выше, чем у других печей вакуумного типа.

Вакуумные индукционные печи (ВИП) по режиму работы разделяют на печи периодического и полунепрерывного действия.

Печи периодического действия имеют лишь одну камеру – плавильно-заливочную. После каждой плавки и заливки форм указанную камеру разгерметизируют; вынимают из неё залитую форму; чистят и заправляют тигель; вновь загружают в него шихту; устанавливают в камеру пустую форму; закрывают камеру; откачивают из неё воздух и производят новую плавку.

Вакуумные печи полунепрерывного действия имеют, кроме плавильно-заливочной, дополнительные камеры – не менее одной вертикальной и одну или две горизонтальных. Каждая из дополнительных камер одним торцом присоединена к плавильно-заливочной камере (ПЗК), а второй торец свободен. Дополнительные камеры изолированы от плавильно-заливочной (в местах присоединения) вакуумными затворами. Аналогичные затворы открывают или закрывают свободные торцы камер. В ВИП полунепрерывного действия загрузка шихты в тигель и её плавка, подшихтовка и все виды доводки ЖМ, подача порожних форм (или изложниц), их заливка, затвердевание ЖМ, извлечение заполненных форм – все эти технологические операции выполняются без нарушения вакуума в ПЗК.

По способу слива ЖМ из тигля в форму или изложницу различают ВИП :

а) с наклоном всей ПЗК вместе с тиглем и заливаемой изложницей, подвешенной на шарнирах к кожуху этой камеры;

б) с наклоном только тигля внутри ПЗК, а заливаемая форма установлена неподвижно на какой-нибудь опоре внутри камеры.

К вакуумным печам полунепрерывного действия относятся печи ВИАМ – 100, ВИАМ – 24, ИСВ – 0,6, УЛВАК, КОНСАРК и др.

У печи ВИАМ – 100 ПЗК имеет цилиндрическую форму и расположена горизонтальною. Примерно в центре камеры находится тигель (с индуктором), который при сливе ЖМ наклоняется вдоль оси ПЗК. Ниже тигля имеется рольганг (с дисковыми роликами), на котором располагаются литейные формы при заливке. На верхней части кожуха ПЗК установлена вертикальная цилиндрическая камера, через которую загружают в тигель шихту без разгерметизации плавильного рабочего пространства печи. Ось шихтовой вертикальной камеры совпадает с осью симметрии тигля.

Перед началом очередного цикла работы печи

ВИАМ – 100 необходимо: тигель осмотреть, очистить и отремонтировать (если нужно); ПЗК со всех сторон закрыть вакуумными затворами (т.е. изолировать от всех остальных камер) и откачать из неё воздух до остаточного давления – мм рт. ст.; разгерметизировать верхние и боковые камеры, т.е. открыть их наружные вакуумные затворы. Строго говоря, перечисленные операции выполняют перед началом первой плавки. Если печь работает в неперерывном режиме (например в течение двух смен), то ПЗК, естественно, не разгерметизируют и загрузку шихты в тигель осуществляют сразу после слива предыдущей дозы ЖМ.

Далее для возобновления нового цикла плавки необходимо: набрать дозу компонентов шихты в специальную загрузочную корзину, поместить её в шихтовую камеру и закрыть камеру наружным вакуумным затвором; откачать воздух из шихтовой камеры до остаточного давления, равного давлению в ПЗК; открыть внутренний вакуумный затвор между этими камерами, выгрузить шихту из корзины в тигель; поднять пустую корзину в шихтовую камеру и закрыть внутренний вакуумный затвор; подать воздух (при атмосферном давлении) в шихтовую камеру; открыть наружный вакуумный затвор; набрать дозу компонентов шихты в загрузочную корзину и т.д.; начать плавку шихты в тигле.

Печь ВИАМ – 100 имеет также две горизонтальные дополнительные камеры цилиндрической формы. Эти камеры расположены по бокам (слева и справа) центральной ПЗК и присоединены к ней своими рабочими торцами. Как указывалось выше, каждая боковая камера с обоих торцов (рабочего и свободного) закрывается или открывается вакуумными затворами. В нижней части камер имеются рольганги с дисковыми роликами, расположенными на одном уровне с роликами в ПЗК. Через одну из боковых камер (например правую) подаются пустые формы в плавильную камеру для заливки. Назовём правую камеру загрузочной. Через другую (левую) удаляются после их заливки. Левую камеру назовём выгрузочной. Последовательность подачи пустых форм после окончания плавки: установить заливаемые формы на вспомогательный рольганг (перед правой камерой) таким образом, чтобы заливочные чаши разных форм располагались в одной горизонтальной плоскости, наиболее удобной для заливки из тигля; протолкнуть формы на рольганг внутри правой камеры и закрыть её наружным вакуумным затвором; откачать воздух из загрузочной (правой) камеры до остаточного давления, равного давлению в ПЗК; открыть вакуумный затвор между этими камерами, подать (по очереди) первую, вторую и другие формы под заливку, располагая каждую из них так, чтобы заливочная чаша находилась под носком тигля, и залить формы (количество форм зависит от их металлоёмкости и габаритных размеров); закрыть вакуумный затвор между плавильно-заливочной и загрузочной камерами; подать воздух в загрузочную камеру (при атмосферном давлении), открыть наружный вакуумный затвор и готовиться к очередному поступлению форм.

Левую боковую камеру используют следующим образом: закрыть свободный торец наружным вакуумным затвором (рабочий торец был закрыт вакуумным затвором ранее перед началом плавки): откачать воздух из выгрузочной (левой) камеры до остаточного давления, равного давлению в ПЗК; открыть вакуумный затвор между этими камерами, передвинуть залитые формы из плавильной в левую камеру и закрыть вакуумный затвор, сохранив при этом «вакуум» в ПЗК; подать воздух (при атмосферном давлении) в выгрузочную камеру, открыть наружный вакуумный затвор и выкатить залитые формы на вспомогательный рольганг, расположенный после левой камеры. Очерёдность и время работы всех камер должны быть согласованны так, чтобы время простоя печи было наименьшим. Если используются оболочковые керамические формы, полученные литьём по выплавляемым моделям, то время между извлечением этих форм из прокалочной печи и заливкой должно быть не более 15 мин.

Печь ВИАМ – 100 может работать с одной боковой камерой например правой, используя её и для загрузки пустых форм, и для выгрузки залитых. Последовательность закрывания и открывания вакуумных затворов, откачки или подачи воздуха в боковую камеру и т. п. зависит от того, для какой цели она используется на данном этапе работы печи.

Вакуумная печь ВИАМ – 24 состоит из трёх основных камер: плавильно-заливочной, шихтовой и для подачи – выдачи литейных форм.

ПЗК имеет цилиндрическую форму, расположена горизонтально и с торцов закрыта сферическими днищами, из которых переднее открывается подобно двери, а заднее отодвигается вдоль оси камеры. В центре камеры находится тигель (с индуктором), прикреплённый к заднему днищу, поэтому если отодвинуть днище, то тигель извлекается из ПЗК и с помощью например цехового мостового крана можно отремонтировать или заменить тигель или индуктор. При сливе ЖМ тигель наклоняется в плоскости, перпендикулярной оси своей камеры. Под тиглем имеется рольганг с дисковыми роликами для установки форм при заливке.

Шихтовая камера сделана в виде цилиндра, располагается вертикально на кожухе ПЗК соосно с тиглем и изолирована от плавильного пространства вакуумным затвором. Загрузка шихты через эту камеру проводится аналогично печи ВИАМ – 100.

Единственная боковая камера имеет цилиндрическую форму, располагается горизонтально и рабочим торцом соединяется с ПЗК через вакуумный затвор. Подобный затвор закрывает и открывает свободный торец боковой камеры. Внутри камеры имеется рольганг с дисковыми роликами. Последовательность подачи из этой камеры пустых форм под заливку и приёмки залитых форм такая же, как у аналогичных камер печи ВИАМ – 100. Перед камерой также установлен вспомогательный рольганг для пустых и залитых форм.

На рис. 1.5 показано устройство вакуумной ИТП типа ИСВ – 0,6 полунепрерывного действия для литья слитков из жаропрочных сплавов и специальных сталей .

Печь ИСВ – 0,6 обслуживается следующим образом : ПЗК 1 печи закрывается сверху крышкой 7, расположенной на самоходной тележке 8 мостового типа с электроприводом. Тележка с крышкой по рельсам отъезжает вправо (по рис. 1.5), ПЗК открывается, в результате чего освобождается доступ для чистки, ремонта и замены тигля 3.

Рис. 1.5. Вакуумная ИТП типа ИСВ – 0,6

полунепрерывного действия:

1 – плавильно-заливочная камера; 2 – плавильный тигель; 3 – камера для загрузки шихты в тигель; 4 – поворотная колонна; 5 – устройство для взятия проб ЖМ и замера его температуры; 6 – дозатор; 7 – крышка плавильно-заливочной камеры; 8 – четырёхколёсная самоходная тележка; 9 – вакуумный затвор; 10 – камера для загрузки и выгрузки изложниц (т.е. литейных форм);

11 – тележка для подачи изложниц (форм) в загрузочную и плавильно-заливочную камеры и извлечения из них залитых форм; 12 – кожух шихтовой камеры; 13 – корзина для шихты;

14 – лебёдка для опускания и поднимания корзины для шихты

Загрузка шихты в тигель производится с помощью шихтовой камеры 3, которая представляет собой цилиндрический кожух 12, внутри которого на тросе подвешена корзина 13 для шихты. Корзину с загруженной в неё шихтой опускают с помощью лебёдки 14 в тигель, после чего дно корзины открывается и шихта высыпается в тигель. Шихтовая камера 3 смонтирована на поворотной колонне 4, что позволяет отводить камеру 3 в сторону для удобства загрузки в неё корзины 13 с новой порцией шихты. Камера 3 отделена от ПЗК вакуумным технологическим затвором и соединена с вакуумной системой. Это позволяет производить загрузку шихты в тигель без нарушения вакуума в ПЗК.

Дозатор 6 предназначен для ввода в тигель различных твёрдых присадок во время плавки. Камера дозатора имеет несколько секций, в которые загружаются требуемые присадочные материалы. Из дозатора в тигель они переносятся специальным поворотным ковшом с откидным днищем. Так же, как шихтовая камера 3, дозатор 6 отделяется от ПЗК вакуумным затвором.

С ПЗК соединена камера 10 изложниц. От цеха и ПЗК она отделена технологическими вакуумными затворами 9 и соединена с вакуумной системой. Подача изложниц в камеру изложниц, а затем в ПЗК осуществляется на тележке 11. Следовательно, камера изложниц с вакуумными затворами выполняет роль шлюзовой камеры, обеспечивая сохранение вакуума в ПЗК при замене в ней изложниц. Заливка ЖМ в формы производится наклоном тигля с помощью электропривода. Остаточное давление в печи составляет 0,6 – 0,7 Па. Питание печи производится от тиристорного источника.